Skip to main content
Log in

Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 ± 1 % for conventional to 72 ± 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 ± 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 ± 0.10 mg O2/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Al-Omari A, Wett B, Han H, Hell M, Bott CB, Murthy S, Han M, Hell M, Bott CB, Murthy S (2012) Full-plant deammonification based on NOB-repression, AOB-seeding, anammox seeding and successful retention. In: IWA Nutrient Removal and Recovery 2012: Trends in NRR. Harbin, China, pp 1–10

  • American Public Health Association (1999) Standard methods for the examination of Water and wastewater. American Public Health Association, Washington, D.C

    Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification and nitrous acid compounds. Water Pollut Control Fed 48:835–852

    CAS  Google Scholar 

  • Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: A review. J Hazard Mater 183:1–15. doi:10.1016/j.jhazmat.2010.06.129

    Article  PubMed  Google Scholar 

  • De Clippeleir H, Jimenez R, Giraldo E, Wett B, Dockett N, Riffat R, Murthy S (2013a) Screens as a method for selective anammox retention in single stage deammonification processes. In: WEF/IWA Nutrient Removal and Recovery 2013. Vancouver, pp 1–10

  • De Clippeleir H, Vlaeminck SE, De Wilde F, Daeninck K, Mosquera M, Boeckx P, Verstraete W, Boon N (2013b) One-stage partial nitritation/anammox at 15 °C on pretreated sewage: feasibility demonstration at lab-scale. Appl Microbiol Biotechnol 97:10199–10210. doi:10.1007/s00253-013-4744-x

    Article  PubMed  Google Scholar 

  • Delgado A, Aspé E, Martí MC, Roeckel M (2004) The effect of volatile fatty acids on the nitrification of a saline effluent. Environ Technol 25:413–422. doi:10.1080/09593332508618459

    Article  CAS  PubMed  Google Scholar 

  • Desloover J, De Clippeleir H, Boeckx P, Du Laing G, Colsen J, Verstraete W, Vlaeminck SE (2011) Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Res 45:2811–2821. doi:10.1016/j.watres.2011.02.028

    Article  CAS  PubMed  Google Scholar 

  • Drewnowski J (2014) The impact of slowly biodegradable organic compounds on the oxygen uptake rate in activated sludge systems. Water Sci Technol 69:1136–1144. doi:10.2166/wst.2013.771

    Article  CAS  PubMed  Google Scholar 

  • Eilersen AM, Henze M, Kløft L (1994) Effect of volatile fatty acids and trimethylamine on nitrification in activated sludge. Water Res 28:1329–1336. doi:10.1016/0043-1354(94)90298-4

    Article  CAS  Google Scholar 

  • Figdore B, Wett B, Hell M, Murthy S, Bowden G, Stinson B (2011) Treatment of dewatering sidestream from a thermal hydrolysis-mesophilic anaerobic digestion process with a single-sludge deammonification process. Water Environment Federation, In, pp. 249–264

    Google Scholar 

  • Fux C, Siegrist H (2004) Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations. Water Sci Technol 50:19–26

    CAS  PubMed  Google Scholar 

  • Fux C, Boehler M, Huber P, Brunner I, Siegrist H (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J Biotechnol 99:295–306

    Article  CAS  PubMed  Google Scholar 

  • Gabarró J, Ganigué R, Gich F, Ruscalleda M, Balaguer MD, Colprim J (2012) Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration. Bioresour Technol 126:283–289. doi:10.1016/j.biortech.2012.09.011

    Article  PubMed  Google Scholar 

  • Ganigué R, Gabarró J, Sànchez-Melsió A, Ruscalleda M, López H, Vila X, Colprim J, Balaguer MD (2009) Long-term operation of a partial nitritation pilot plant treating leachate with extremely high ammonium concentration prior to an anammox process. Bioresour Technol 100:5624–5632. doi:10.1016/j.biortech.2009.06.023

    Article  PubMed  Google Scholar 

  • Ganigué R, Volcke EIP, Puig S, Balaguer MD, Colprim J, Sin G (2010) Systematic model development for partial nitrification of landfill leachate in a SBR. Water Sci Technol 61:2199–2210. doi:10.2166/wst.2010.979

    Article  PubMed  Google Scholar 

  • Gao H, Zhang Z, Lai Y, Li J, Liu Y (2008) Continuous query scheduler based on operators clustering. J Cent S Univ Technol 15:830–834. doi:10.1007/s11771

    Article  CAS  Google Scholar 

  • Germain E, Nelles F, Drews A, Pearce P, Kraume M, Reid E, Judd SJ, Stephenson T (2007) Biomass effects on oxygen transfer in membrane bioreactors. Water Res 41:1038–1044. doi:10.1016/j.watres.2006.10.020

    Article  CAS  PubMed  Google Scholar 

  • Gomez J, Mendez R, Lema JM, De Compostela S (2000) Kinetic study of addition of volatile organic compounds to a nitrifying sludge. Appl Biochem Biotechnol 87:189–202

    Article  CAS  PubMed  Google Scholar 

  • Guisasola A, Petzet S, Baeza JA, Carrera J, Lafuente J (2007) Inorganic carbon limitations on nitrification: experimental assessment and modelling. Water Res 41:277–286. doi:10.1016/j.watres.2006.10.030

    Article  CAS  PubMed  Google Scholar 

  • Hanaki K, Wantawin C, Ohgaki S (1990) Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Res 24:289–296. doi:10.1016/0043-1354(90)90003-O

    Article  CAS  Google Scholar 

  • Hatzigeorgiou M, Owsenek B, Alkema T, Sieger R, Pallansch K (2006) Startup of anaerobic mesophilic digesters. Proc Water Environ Fed 2006:415–428

    Article  Google Scholar 

  • Higgins MJ, Murthy SN, Schafer P, Cooper A, Kasirga E, Lee K, Machisko J, Fountain P, Kelleher K (2011) Dewatering characteristics of cambi thermal hydrolysis biosolids: centrifuges vs. BFPs. In: WEFTEC 2011. pp 678–684

  • Hooper AB, Terry KR (1973) Specific inhibitors of ammonia in Nitrosomonas. J Bacteriol 115:480–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenni S, Vlaeminck SE, Morgenroth E, Udert KM (2014) Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios. Water Res 49:316–326. doi:10.1016/j.watres.2013.10.073

    Article  CAS  PubMed  Google Scholar 

  • Jolis D (2008) High-solids anaerobic digestion of municipal sludge pretreated by thermal hydrolysis. Water Environ Res 80:654–662. doi:10.2175/193864708x267414

  • Joss A, Salzgeber D, Eugster J, König R, Rottermann K, Burger S, Fabijan P, Leumann S, Mohn J, Siegrist HR (2009) Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ Sci Technol 43:5301–5306. doi:10.1021/es900107w

    Article  CAS  PubMed  Google Scholar 

  • Keluskar R, Nerurkar A, Desai A (2013) Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry. Bioresour Technol 130:390–397. doi:10.1016/j.biortech.2012.12.066

    Article  CAS  PubMed  Google Scholar 

  • Kepp U, Machenbach I, Weisz N, Solheim OE (2000) Enhanced stabilisation of sewage sludge through thermal hydrolysis - Three years of experience with full scale plant. Water Sci Technol 42:89–96

  • Lackner S, Thoma K, Gilbert EM, Gander W, Schreff D, Horn H (2015) Start-up of a full-scale deammonification SBR-treating effluent from digested sludge dewatering. Water Sci Technol 71:553–559. doi:10.2166/wst.2014.421

    Article  CAS  PubMed  Google Scholar 

  • Lan C-J, Kumar M, Wang C-C, Lin J-G (2011) Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresour Technol 102:5514–5519. doi:10.1016/j.biortech.2010.11.024

    Article  CAS  PubMed  Google Scholar 

  • Leyva-Díaz JC, González-Martínez A, González-López J, Muñío MM, Poyatos JM (2014) Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor–membrane bioreactor for wastewater treatment. Chem Eng J 259:692–702. doi:10.1016/j.cej.2014.07.136

    Article  Google Scholar 

  • Li X, Zen G, Rosenwinkel KH, Kunst S, Weichgrebe D, Cornelius A, Yang Q (2004) Start up of deammonification process in one single SBR system. Water Sci Technol 50:1–8

    PubMed  Google Scholar 

  • Lu H, Le T, Zhu K, Wadhawan T, Higgins M, Boardman G, Novak J, Al-omari A, Murthy S (2015) Investigating impact of thermal hydrolysis pretreatment of sludge biodegradability. In: WEF/IWA Residuals and Biosolids Conference. Washington, D.C, pp 1–14

  • Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damsté JSS, Spieck E, Le Paslier D, Daims H (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci 107:13479–13484. doi:10.1073/pnas.1003860107

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamais D, Jenkins D, Pitt P (1993) A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater. Water Res 27:195–197. doi:10.1016/0043-1354(93)90211-Y

    Article  CAS  Google Scholar 

  • Mancell-Egala A, Kinnear D, Murthy S, Kimberly J (2012) Settling transition concentration measurement to quantify sludge settling behavior. In: Water Environment Federation. pp 5735–5746(12)

  • Mulder A (2003) The quest for sustainable nitrogen removal technologies. Water Sci Technol 48:67–75

    CAS  PubMed  Google Scholar 

  • Oguz MT, Robinson KG, Layton AC, Sayler GS (2006) Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge. Water Res 40:665–674. doi:10.1016/j.watres.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  • Pickworth B, Adams J, Panter K, Solheim O (2006) Maximising biogas in anaerobic digestion by using engine waste heat for thermal hydrolysis pre-treatment of sludge. Water Sci Technol 54:101–108

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM, Microbiologybiotechnology A, Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596. doi:10.1007/s002530051340

    Article  CAS  Google Scholar 

  • Udert KM, Kind E, Teunissen M, Jenni S, Larsen TA (2008) Effect of heterotrophic growth on nitritation/anammox in a single sequencing batch reactor. Water Sci Technol 58:277–284. doi:10.2166/wst.2008.389

    Article  CAS  PubMed  Google Scholar 

  • Van de Graaf AA, Mulder A, De Bruijn P, Jetten MSM, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251

    PubMed  PubMed Central  Google Scholar 

  • Van der Star WRL, Abma WR, Blommers D, Mulder J-W, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht MCM (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163. doi:10.1016/j.watres.2007.03.044

    Article  PubMed  Google Scholar 

  • Vázquez-Padín J, Mosquera-Corral A, Campos JL, Méndez R, Revsbech NP (2010a) Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Res 44:4359–4370. doi:10.1016/j.watres.2010.05.041

    Article  PubMed  Google Scholar 

  • Vázquez-Padín JRR, Figueroa M, Campos JLL, Mosquera-Corral A, Méndez R (2010b) Nitrifying granular systems: a suitable technology to obtain stable partial nitrification at room temperature. Sep Purif Technol 74:178–186. doi:10.1016/j.seppur.2010.06.003

    Article  Google Scholar 

  • Vázquez-Padín JR, Morales N, Gutiérrez R, Fernández R, Rogalla F, Barrio JP, Campos JL, Mosquera-Corral A, Méndez R (2014) Implications of full-scale implementation of an anammox-based process as post-treatment of a municipal anaerobic sludge digester operated with co-digestion. Water Sci Technol 69:1151–1158. doi:10.2166/wst.2013.795

    Article  PubMed  Google Scholar 

  • Wett B (2007) Development and implementation of a robust deammonification process. Water Sci Technol 56:81–88

    Article  CAS  PubMed  Google Scholar 

  • Wett B, Rauch W (2003) The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Res 37:1100–1110. doi:10.1016/S0043-1354(02)00440-2

    Article  CAS  PubMed  Google Scholar 

  • Wett B, Rostek R, Ingerle K (1998) pH controlled reject water treatment. Water Sci Technol 37:165–172

  • Wett B, Hell M, Nyhuis G, Puempel T, Takács I, Murthy S (2009) Syntrophy of aerobic and anaerobic ammonia oxidisers. Water Sci Technol 61:1915–1922. doi:10.2166/wst.2010.969

    Article  Google Scholar 

  • Wett B, Jimenez JA, Takács I, Murthy S, Bratby JR, Holm NC, Ronner-Holm SGE (2011) Models for nitrification process design: one or two AOB populations? Water Sci Technol 64:568. doi:10.2166/wst.2011.499

    Article  CAS  PubMed  Google Scholar 

  • Wett B, Omari A, Podmirseg SM, Han M, Akintayo O, Gómez Brandón M, Murthy S, Bott C, Hell M, Takács I, Nyhuis G, O’Shaughnessy M (2013) Going for mainstream deammonification from bench to full scale for maximized resource efficiency. Water Sci Technol 68:283–289. doi:10.2166/wst.2013.150

    Article  CAS  PubMed  Google Scholar 

  • Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour Technol 102:5353–5360. doi:10.1016/j.biortech.2010.12.081

    Article  CAS  PubMed  Google Scholar 

  • Wu YJ, Whang LM, Chang MY, Fukushima T, Lee YC, Cheng SS, Hsu SF, Chang CH, Shen W, Yang CY, Fu R, Tsai TY (2013) Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater. Bioresour Technol 141:35–40. doi:10.1016/j.biortech.2013.02.108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by District of Columbia Water and Sewer Authority (DC Water), Washington, DC. S.E.V. was supported as a postdoctoral fellow from The Research Foundation – Flanders (FWO - Vlaanderen). The authors gratefully thank Norman Dockett for technical support, and Matthew Michaelis for carrying digestate from Alexandria WWTP. The authors also thank everyone in the DC Water research lab for all assistance offered.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried E. Vlaeminck.

Ethics declarations

This work was supported by District of Columbia Water and Sewer Authority (DC Water), Washington, DC, USA. S.E.V. was supported as a postdoctoral fellow from The Research Foundation – Flanders (FWO - Vlaanderen).

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., De Clippeleir, H., Su, C. et al. Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization. Appl Microbiol Biotechnol 100, 5595–5606 (2016). https://doi.org/10.1007/s00253-016-7368-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7368-0

Keywords

Navigation