Skip to main content
Log in

Dihydroxylation of four- and five-ring aromatic hydrocarbons by the naphthalene dioxygenase from Sphingomonas CHY-1

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The naphthalene dioxygenase from Sphingomonas CHY-1 exhibits extremely broad substrate specificity toward polycyclic aromatic hydrocarbons (PAHs). In a previous study, the catalytic rates of oxidation of nine PAHs were determined using the purified dioxygenase, but the oxidation products formed from four- to five-ring hydrocarbons were incompletely characterized. Here, we reexamined PAH oxygenation reactions using Escherichia coli recombinant cells overproducing strain CHY-1 dioxygenase. Hydroxylated products generated by the dioxygenase were purified and characterized by means of GC-MS, UV absorbance as well as 1H- and 13C-NMR spectroscopy. Fluoranthene was converted to three dihydrodiols, the most abundant of which was identified as cis-7,8-dihydroxy-7,8-dihydrofluoranthene. This diol turned out to be highly unstable, converting to 8-hydroxyfluoranthene by spontaneous dehydration. The dioxygenase also catalyzed dihydroxylations on the C2–C3 and presumably the C1–C2 positions, although at much lower rates. Benz[a]anthracene was converted into three dihydrodiols, hydroxylated in positions C1–C2, C8–C9, and C10–C11, and one bis-cis-dihydrodiol. The latter compound was identified as cis,cis-1,2,10,11-tetrahydroxy-1,2,10,11-tetrahydrobenz[a]anthracene, which resulted from the subsequent dioxygenation of the 1,2- or 10,11-dihydrodiols. Chrysene dioxygenation yielded a single diol identified as cis-3,4-dihydroxy-3,4-dihydrochrysene, which underwent further oxidation to give cis,cis-3,4,9,10 chrysene tetraol. Pyrene was a poor substrate for the CHY-1 dioxygenase and gave a single dihydrodiol hydroxylated on C4 and C5, whereas benzo[a}pyrene was converted to two dihydrodiols, one of which was identified as cis-9,10-dihydrodiol. The selectivity of the dioxygenase is discussed in the light of the known 3D structure of its catalytic component and compared to that of the few enzymes able to attack four- and five-ring PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Boyd DR, Sharma ND, Agarwal R, Resnick SM, Schocken MJ, Gibson DT, Sayer JM, Yagi H, Jerina DM (1997) Bacterial dioxygenase-catalysed dihydroxylation and chemical resolution routes to enantiopure cis-dihydrodiols of chrysene. J Chem Soc-Perkin Trans 1(11):1715–1723

    Article  Google Scholar 

  • Boyd DR, Sharma ND, Belhocine T, Malone JF, McGregor S, Allen CCR (2006) Dioxygenase-catalysed dihydroxylation of arene cis-dihydrodiols and acetonide derivatives: a new approach to the synthesis of enantiopure tetraoxygenated bioproducts from arenes. Chem Commun 47:4934–4936

    Article  Google Scholar 

  • Boyd DR, Sharma ND, Coen GP, Hempenstall F, Ljubez V, Malone JF, Allen CCR, Hamilton JTG (2008) Regioselectivity and stereoselectivity of dioxygenase catalysed cis-dihydroxylation of mono- and tri-cyclic azaarene substrates. Org Biomol Chem 6(21):3957–3966

    Article  PubMed  CAS  Google Scholar 

  • Boyd DR, Sharma ND, Hempenstall F, Kennedy MA, Malone JF, Allen CCR, Resnick SM, Gibson DT (1999) bis-cis-Dyhydrodiols: a new class of metabolites resulting from biphenyl dioxygenase-catalyzed sequential asymetric cis-dihydroxylation of polycyclic arenes and heteroarenes. J Org Chem 64:4005–4011

    Article  CAS  Google Scholar 

  • Demaneche S, Meyer C, Micoud J, Louwagie M, Willison JC, Jouanneau Y (2004) Identification and functional analysis of two aromatic ring-hydroxylating dioxygenases from a Sphingomonas strain degrading various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:6714–6725

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Doyle E, Muckian L, Hickey AM, Clipson N (2008) Microbial PAH Degradation. Adv Appl Microbiol 65:27–66

    Article  PubMed  CAS  Google Scholar 

  • Ferraro DJ, Brown EN, Yu CL, Parales RE, Gibson DT, Ramaswamy S (2007) Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae BI. BMC Struct Biol 7(10)

  • Gibson DT, Mahadevan V, Jerina DM, Yogi H, Yeh HJ (1975) Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. Science 189(4199):295–297

    Article  PubMed  CAS  Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE (1988) Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol 54:2556–2565

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jakoncic J, Jouanneau Y, Meyer C, Stojanoff V (2007a) The catalytic pocket of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1. Biochem Biophys Res Commun 352:861–866

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jakoncic J, Jouanneau Y, Meyer C, Stojanoff V (2007b) The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1. Febs J 274:2470–2481

    Article  PubMed  CAS  Google Scholar 

  • Jerina DM, Selander H, Yagi H, Wells MC, Davey JF, Mahadevan V, Gibson DT (1976) Dihydrodiols from anthracene and phenathrene. J Am Chem Soc 98(19):5988–5996

    Article  PubMed  CAS  Google Scholar 

  • Jerina DM, Vanbladeren PJ, Yagi H, Gibson DT, Mahadevan V, Neese AS, Koreeda M, Sharma ND, Boyd DR (1984) Synthesis and absolute-configuration of the bacterial cis-1,2-dihydrodiol, cis-8,9-dihydrodiol, and cis-10,11-dihydrodiol metabolites of benz[a]anthracene formed by a strain of Beijerinckia. J Org Chem 49:3621–3628

    Article  CAS  Google Scholar 

  • Jouanneau Y, Martin F, Krivobok S, Willison JC (2011) Ring-hydroxylating dioxygenases involved in PAH biodegradation: structure, function and biodiversity. In: Koukkou AI (ed) Microbial bioremediation of non metals: current research. Caister Academic Press, Norflok, UK, pp 149–175

    Google Scholar 

  • Jouanneau Y, Meyer C, Jakoncic J, Stojanoff V, Gaillard J (2006) Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons. Biochemistry 45(40):12380–12391

    Article  PubMed  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo a pyrene. Intern Biodeter Biodeg 45:57–88

    Article  CAS  Google Scholar 

  • Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299(5609):1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72(2):1045–1054

  • Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1: Evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185:3828–3841

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kunihiro M, Ozeki Y, Nogi Y, Hamamura N, Kanaly RA (2013) Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp. strain KK22. Appl Environ Microbiol 79:4410–4420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kweon O, Kim S-J, Baek S, Chae J-C, Adjei M, Baek D-H, Kim Y-C, Cerniglia C (2008) A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochem 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Kweon O, Kim S-J, Jones RC, Freeman JP, Adjei MD, Edmondson RD, Cerniglia CE (2007) A polyomic approach to elucidate the fluoranthene-degradative pathway in Mycobacterium vanbaalenii PYR-1. J Bacteriol 189:4635–4647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kweon O, Kim SJ, Freeman JP, Song J, Baek S, Cerniglia CE (2010) Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. mBio 1(2):e00135-10–e00135-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez Z, Vila J, Minguillon C, Grifoll M (2006) Metabolism of fluoranthene by Mycobacterium sp strain AP1. Appl Microbiol Biotechnol 70:747–756

    Article  PubMed  CAS  Google Scholar 

  • Lu X-Y, Zhang T, Fang HH-P (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol 89:1357–1371

    Article  PubMed  CAS  Google Scholar 

  • Lyu Y, Zheng W, Zheng T, Tian Y (2014) Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. Plos One 9(7) doi:10.1371/journal.pone.0101438

  • Maeda AH, Nishi S, Hatada Y, Ozeki Y, Kanaly RA (2014) Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo k fluoranthene by Sphingobium sp strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry. Microbial Biotechnol 7:114–129

    Article  CAS  Google Scholar 

  • Nam JW, Nojiri H, Yoshida T, Habe H, Yamane H, Omori T (2001) New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci Biotechnol Biochem 65:254–263

    Article  PubMed  CAS  Google Scholar 

  • Parales RE, Resnick SM (2006) Aromatic ring hydroxylating dioxygenases. In: Ramos JL, Levesque RC (eds) Pseudomonas. vol 4. Springer, pp 287–340

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32(6):927–955

    Article  PubMed  CAS  Google Scholar 

  • Rehmann K, Hertkorn N, Kettrup AA (2001) Fluoranthene metabolism in Mycobacterium sp strain KR20: identity of pathway intermediates during degradation and growth. Microbiology-Sgm 147:2783–2794

    Article  CAS  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    PubMed  CAS  PubMed Central  Google Scholar 

  • Story SP, Parker SH, Hayasaka SS, Riley MB, Kline EL (2001) Convergent and divergent points in catabolic pathways involved in utilization of fluoranthene, naphthalene, anthracene, and phenanthrene by Sphingomonas paucimobilis var. EPA505. J Ind Microbiol Biotechnol 26(6):369–382

    Article  PubMed  CAS  Google Scholar 

  • Vila J, Lopez Z, Sabate J, Minguillon C, Solanas AM, Grifoll M (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Willison JC (2004) Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source. FEMS Microbiol Lett 241:143–150

    Article  PubMed  CAS  Google Scholar 

  • Yu CL, Liu W, Ferraro DJ, Brown EN, Parales JV, Ramaswamy S, Zylstra GJ, Gibson DT, Parales RE (2007) Purification, characterization, and crystallization of the components of a biphenyl dioxygenase system from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol 34(4):311–324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the CNRS and Univ Grenoble Alpes for funding. This work was also supported in part by a grant from the ANR “programme Labex” (ARCANE project no. ANR-11-LABX-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Jouanneau.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouanneau, Y., Meyer, C. & Duraffourg, N. Dihydroxylation of four- and five-ring aromatic hydrocarbons by the naphthalene dioxygenase from Sphingomonas CHY-1. Appl Microbiol Biotechnol 100, 1253–1263 (2016). https://doi.org/10.1007/s00253-015-7050-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7050-y

Keywords

Navigation