Skip to main content
Log in

Potentialities of coupling biological processes (biotrickler/biofilter) for the degradation of a mixture of sulphur compounds

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study deals with the potential of biological processes combining a biotrickler and a biofilter to treat a mixture of sulphur-reduced compounds including dimethyl sulphide (DMS), dimethyl disulphide (DMDS) and hydrogen sulphide (H2S). As a reference, duplicated biofilters were implemented, and operating conditions were similar for all bioprocesses. The first step of this work was to determine the efficiency removal level achieved for each compound of the mixture and in a second step, to assess the longitudinal distribution of biodegradation activities and evaluate the total bacteria, Hyphomicrobium sp. and Thiobacillus thioparus densities along the bed height. A complete removal of hydrogen sulphide is reached at the start of the experiment within the first stage (biotrickler) of the coupling. This study highlighted that the coupling of a biotrickling filter and a biofilter is an interesting way to improve both removal efficiency levels (15–20 % more) and kinetics of recalcitrant sulphur compounds such as DMS and DMDS. The total cell densities remained similar (around 1 × 1010 16S recombinant DNA (rDNA) copies g dry packing material) for duplicated biofilters and the biofilter below the biotrickling filter. The relative abundances of Hyphomicrobium sp. and T. thioparus have been estimated to an average of 10 ± 7.0 and 0.23 ± 0.07 %, respectively, for all biofilters. Further investigation should allow achieving complete removal of DMS by starting the organic sulphur compound degradation within the first stage and surveying microbial community structure colonizing this complex system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3

Similar content being viewed by others

References

  • Arellano-Garcia L, Revah S, Ramirez M, Gomez JM, Cantero D (2009) Dimethyl sulphide degradation using immobilized Thiobacillus thioparus in a biotrickling filter. Environ Technol 30:1273–1279. doi:10.1080/09593330902911713

    Article  CAS  PubMed  Google Scholar 

  • Beller HR, Chain PSG, Letain TE, Chakicheria A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488. doi:10.1128/JB.188.4.1473-1488.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Both R (2001) Directive on odour in ambient air: an established system of odour measurement and odour regulation in Germany. Water Sci Technol 44:119–126

    CAS  PubMed  Google Scholar 

  • Cabrol L, Malhautier L, Poly F, Lepeuple AS, Fanlo JL (2010) Assessing the bias linked to DNA recovery from biofiltration woodchips for microbial community investigation by fingerprinting. Appl Microbiol Biotechnol 85:779–790. doi:10.1007/s00253-009-2253-8

    Article  CAS  PubMed  Google Scholar 

  • Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90:837–849. doi:10.1007/s00253-011-3191-9

    Article  CAS  PubMed  Google Scholar 

  • Cabrol L, Malhautier L, Poly F, Lepeuple AS, Fanlo JL (2012) Bacterial dynamics in steady-state biofilters: beyond functional stability. FEMS Microbiol Ecol 79:260–271. doi:10.1111/j.1574-6941.2011.01213.x

    Article  CAS  PubMed  Google Scholar 

  • Caceres M, Silva J, Morales M, San Martin R, Aroca G (2012) Kinetics of the bio-oxidation of volatile reduced sulphur compounds in a biotrickling filter. Bioresour Technol 118:243–248. doi:10.1016/j.biortech.2012.04.039

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Hoff SJ, Koziel JA, Cai L, Zelle B, Sun G (2008) Performance evaluation of a wood-chip based biofilter using solid-phase microextraction and gas chromatography-mass spectroscopy-olfactometry. Bioresour Technol 99:7767–7780. doi:10.1016/j.biortech.2008.01.085

    Article  CAS  PubMed  Google Scholar 

  • Cho KS, Hirai M, Shoda M (1991) Removal of DMDS by the peat seeded with night soil sludge. J Biosci Bioeng 71:289–291

    CAS  Google Scholar 

  • Chung YC, Cheng CY, Chen TY, Hsu JS, Kui CC (2010) Structure of the bacterial community in a biofilter during dimethyl sulfide (DMS) removal process. Bioresour Technol 100:7176–7179. doi:10.1016/j.biortech.2010.03.131

    Google Scholar 

  • Chung YC, Lin YY, Tseng CP (2005) Removal of high concentration of NH3 and coexistent H2S by biological activated carbon (BAC) biotrickling filter. Bioresour Technol 96:1812–1820. doi:10.1016/j.biortech.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  • Estrada JM, Kraakman BNJR, Muñoz R, Lebrero R (2011) A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ Sci Technol 45:1100–1106. doi:10.1021/es103478j

    Article  CAS  PubMed  Google Scholar 

  • Fanlo JL (2005) La réglementation. In: DUNOD (ed) Pollutions olfactives: origine, legislation, analyse, traitement, Paris, France, pp 41-98

  • Friedrich U, Van Langenhove H, Altendorf K, Lipski A (2003) Microbial community and physicochemical analysis of an industrial waste gas biofilter and design of 16S rRNA-targeting oligonucleotide probes. Environ Microbiol 5:183–201. doi:10.1046/j.1462-2920.2003.00397.x

    Article  CAS  PubMed  Google Scholar 

  • Fukushima T, Whang LM, Chen PC, Putri DW, Chang MY, Wu YJ, Lee YC (2013) Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicrobium and Thiobacillus spp. Bioresour Technol 141:131–137. doi:10.1016/j.biortech.2013.03.122

    Article  CAS  PubMed  Google Scholar 

  • Gadal-Mawart A, Malhautier L, Renner C, Rocher J, Fanlo JL (2012) Treatment of a gaseous mixture by biofilters filled with an inorganic packing material: performance and influence of inoculation on removal efficiency levels. J Chem Technol Biotechnol 87:824–830. doi:10.1002/jctb.3718

    Article  CAS  Google Scholar 

  • Grove JA, Kautola H, Javadpour S, Moo-Young M, Anderson WA (2004) Assessment of changes in the microorganism community in a biofilter. Biochem Eng J 18:111–114. doi:10.1016/S1369-703X(03)00182-7

    Article  CAS  Google Scholar 

  • Hassan AA, Sorial GA (2011) Treatment of dynamic mixture of hexane and benzene vapors in a trickle bed air biofilter integrated with cyclic adsorption/desorption beds. Chemosphere 82:521–528. doi:10.1016/j.chemosphere.2010.10.060

  • Hayes AC, Zhang Y, Liss SN, Grant Allen D (2010) Linking performance to microbiology in biofilters treating dimethyl sulphide in the presence and absence of methanol. Appl Microbiol Biotechnol 85:1151–1166. doi:10.1007/s00253-009-2272-5

    Article  CAS  PubMed  Google Scholar 

  • Iranpour R, Cox HHJ, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog Sustain Energy 24:254–267. doi:10.1002/ep.10077

    CAS  Google Scholar 

  • Juteau P, Larocque R, Rho D, LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol 52:863–868

    Article  CAS  PubMed  Google Scholar 

  • Kennes C, Rene ER, Veiga MC (2009) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84:1419–1436. doi:10.1002/jctb.2216

    Article  CAS  Google Scholar 

  • Lebrero R, Gondim AC, Pérez R, García-Encina PA, Muñoz R (2014) Comparative assessment of a biofilter, a biotrickling filter and a hollow fiber membrane bioreactor for odor treatment in wastewater treatment plants. Water Res 49:339–350. doi:10.1016/j.watres.2013.09.055

    Article  CAS  PubMed  Google Scholar 

  • Mahin TD (2001) Comparison of different approaches used regulates odours around the world. Water Sci Technol 44:87–102

    CAS  PubMed  Google Scholar 

  • Malhautier L, Khammar N, Bayle S, Fanlo JL (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22. doi:10.1007/s00253-005-1960-z

    Article  CAS  PubMed  Google Scholar 

  • Mudliar S, Giri B, Padoley K, Satpute D, Dixit R, Bhatt P, Pandey R, Juwarkar A, Vaidya A (2010) Bioreactors for treatment of VOCs and odours—a review. J Environ Manage 91:1039–1054. doi:10.1016/j.jenvman.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  • Myung Cha J, Suk Cha W, Lee JH (1999) Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochem 34:659–665

  • Paca J, Klapkova E, Halecky M, Jones K, Soccol CR (2007) Performance evaluation of a biotrickling filter degrading mixtures of hydrophobic and hydrophilic compounds. Clean Techn Environ Policy 9:69–74. doi:10.1007/s10098-006-0054-7

    Article  CAS  Google Scholar 

  • Ramirez M, Fernández M, Cáceres MS, Pérez RM, Gómez JM, Cantero D (2009) Biotrickling filters for H2S, MM, DMS and DMDS removal by Thiobacillus thioparus and Acidithiobacillus thiooxidans. In: Bartacek J, Kennes C, Lens PNL (eds) Proceedings of the Third International Congress on Biotechniques for Air Pollution Control, Delft, The Netherlands, 28–30 September. CRC Press, London, UK, pp 137–150

    Google Scholar 

  • Ramirez M, Fernández M, Granada C, Le Borgne S, Gómez JM, Cantero D (2011) Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria. Bioresour Technol 102:4047–4053. doi:10.1016/j.biortech.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  • Rehman ZU, Farooqi IH, Ayub S (2009) Performance of biofilter for the removal of hydrogen sulphide odour. Int J Environ Res Public Health 3:537–544

    CAS  Google Scholar 

  • Ruokojärvi A, Ruuskanen J, Martikainen PJ, Olkkonen M (2001) Oxidation of gas mixtures containing dimethyl sulfide, hydrogen sulfide, and methanethiol using a two-stage biotrickling filter. J Air Waste Manage Assoc 51:11–16. doi:10.1080/10473289.2001.10464260

    Article  Google Scholar 

  • Schlegelmilch M, Stresse J, Biedermann W, Herold T, Stegmann R (2005) Odour control at biowaste composting facilities. Waste Manage 25:917–927. doi:10.1016/j.wasman.2005.07.011

    Article  CAS  Google Scholar 

  • Sempere F, Martínez-Soria V, Penya-roja JM, Izquierdo M, Palau J, Gabaldón C (2010) Comparison between laboratory and pilot biotrickling filtration of air emissions from painting and wood finishing. J Chem Technol Biotechnol 85:364–370. doi:10.1002/jctb.2327

    Article  CAS  Google Scholar 

  • Sercu B, Boon N, Vander Beken S, Verstraete W, Van Langenhove H (2006) Performance and microbial analysis of defined and non-defined inocula for the removal of dimethyl sulfide in a biotrickling filter. Biotechnol Bioeng 96:661–672. doi:10.1002/bit.21059

    Article  Google Scholar 

  • Smet E, Keymeulen R, Van Langenhove H, Verstraete W (1996) The effect of inoculation and the type of carrier material used on the biofiltration of methyl sulphides. Appl. Microbiol Biotechnol 45:293–298

    Article  CAS  Google Scholar 

  • Tang K, Baskaran V, Nemati M (2008) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94. doi:10.1016/j.bej.2008.12.011

    Article  Google Scholar 

  • Van Langenhove HV, Roelstraete K, Schamp N, Houtmeyers J (1985) GCMS identification of odorous volatiles in wastewater. Water Res 19:597–603. doi:10.1016/0043-1354(85)90065-X

    Article  Google Scholar 

  • Zhang Y, Liss SN, Allen DG (2006) The effects of methanol on the biofiltration of dimethyl sulfide in inorganic biofilters. Biotechnol Bioeng 95:734–743. doi:10.1002/bit.21033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to the Orientations Stratégiques des Ecoles des Mines (OSEM) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Malhautier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhautier, L., Soupramanien, A., Bayle, S. et al. Potentialities of coupling biological processes (biotrickler/biofilter) for the degradation of a mixture of sulphur compounds. Appl Microbiol Biotechnol 99, 89–96 (2015). https://doi.org/10.1007/s00253-014-5842-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5842-0

Keywords

Navigation