Skip to main content
Log in

Fungal and Bacterial Diversity in the Tuber magnatum Ecosystem and Microbiome

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

A Correction to this article was published on 11 April 2022

This article has been updated

Abstract

Fungi belonging to the genus Tuber produce edible ascocarps known as truffles. Tuber magnatum Picco may be the most appreciated truffle species given its peculiar aroma. While its life cycle is not yet fully elucidated, some studies demonstrated an active role of microorganisms. The main goal of this study was to determine how the T. magnatum microbiome varies across space and time. To address this, we characterized microbial communities associated with T. magnatum through high-throughput amplicon sequencing of internal transcribed spacer (ITS) and 16S rDNAs in three productive natural sites in Italy across 2 years. At each site, four truffles were sampled as well as the soil underneath and at 40, 100, and 200 cm from the harvesting points, to assess for microbial variation between substrates, years, and sites. A statistically significant site-related effect on microbial communities was identified, whereas only the prokaryotic community was significantly affected by the distance of soil from the truffle. Significant differences between sampling years were also found, demonstrating a possible relation among rainfall precipitation and Firmicutes and Actinobacteria. Thirty-six bacterial OTUs in truffles and 11 bacterial OTUs in soils beneath truffles were identified as indicator taxa. As shown for other truffle species, the dominance of Bradyrhizobium, Rhizobium, and Ensifer spp. within the truffle fruiting body suggests an evolutionary adaptation of this microorganism to the genus Tuber. The present work offers novel and relevant insights into the microbial ecology of T. magnatum ecosystems and fruiting bodies. The function and role of these bacteria in the truffle microbiome and life cycle are in need of further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Raw sequence reads have been deposited to the Sequence Read Archive [98] and the submission is linked to the bioproject number PRJNA751865 in the National Center of Biotechnology Information (https://www.ncbi.nlm.nih.gov/bioproject/).

Code Availability

R scripts developed to analyze the data are available in Supplementary File S1 and also at https://github.com/Gian77/Scientific-Papers-R-Code.

Change history

References

  1. Riccioni C, Rubini A, Belfiori B, et al (2016) Tuber magnatum: the special one. What makes it so different from the other Tuber spp.? In: Soil Biology. Springer International Publishing, Cham, pp 87–103

  2. Belfiori B, D’Angelo V, Riccioni C et al (2020) Genetic structure and phylogeography of Tuber magnatum populations. Diversity 12:44. https://doi.org/10.3390/d12020044

    Article  Google Scholar 

  3. Thomas P, Büntgen U (2019) A risk assessment of Europe’s black truffle sector under predicted climate change. Sci Total Environ 655:27–34. https://doi.org/10.1016/j.scitotenv.2018.11.252

    Article  CAS  PubMed  Google Scholar 

  4. Varese GC, Angelini P, Bencivenga M et al (2011) Ex situ conservation and exploitation of fungi in Italy. Plant Biosyst 145:997–1005. https://doi.org/10.1080/11263504.2011.633119

    Article  Google Scholar 

  5. Donnini D, Gargano ML, Perini C et al (2013) Wild and cultivated mushrooms as a model of sustainable development. Plant Biosyst 147:226–236. https://doi.org/10.1080/11263504.2012.754386

    Article  Google Scholar 

  6. Zotti M, Persiani AM, Ambrosio E et al (2013) Macrofungi as ecosystem resources: conservation versus exploitation. Plant Biosyst 147:219–225. https://doi.org/10.1080/11263504.2012.753133

    Article  Google Scholar 

  7. Murat C, Vizzini A, Bonfante P, Mello A (2005) Morphological and molecular typing of the below-ground fungal community in a natural Tuber magnatum truffle-ground. FEMS Microbiol Lett 245:307–313. https://doi.org/10.1016/j.femsle.2005.03.019

    Article  CAS  PubMed  Google Scholar 

  8. Bach C, Beacco P, Cammaletti P et al (2021) First production of Italian white truffle (Tuber magnatum Pico) ascocarps in an orchard outside its natural range distribution in France. Mycorrhiza 31:383–388. https://doi.org/10.1007/s00572-020-01013-2

    Article  CAS  PubMed  Google Scholar 

  9. Paolocci F, Rubini A, Riccioni C, Arcioni S (2006) Reevaluation of the life cycle of Tuber magnatum. Appl Environ Microbiol 72:2390–2393. https://doi.org/10.1128/AEM.72.4.2390-2393.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mello A, Murat C, Bonfante P (2006) Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol Lett 260:1–8. https://doi.org/10.1111/j.1574-6968.2006.00252.x

    Article  CAS  PubMed  Google Scholar 

  11. Vita F, Giuntoli B, Bertolini E et al (2020) Tuberomics: a molecular profiling for the adaption of edible fungi (Tuber magnatum Pico) to different natural environments. BMC Genomics 21:90. https://doi.org/10.1186/s12864-020-6522-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mamoun M, Olivier JM (1992) Effect of soil Pseudomonads on colonization of hazel roots by the ecto-mycorrhizal species Tuber melanosporum and its competitors. Plant Soil 139:265–273. https://doi.org/10.1007/bf00009318

    Article  Google Scholar 

  13. Sbrana C, Agnolucci M, Bedini S et al (2002) Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiol Lett 211:195–201. https://doi.org/10.1111/j.1574-6968.2002.tb11224.x

    Article  CAS  PubMed  Google Scholar 

  14. Gryndler M, Soukupová L, Hršelová H et al (2013) A quest for indigenous truffle helper prokaryotes. Environ Microbiol Rep 5:346–352. https://doi.org/10.1111/1758-2229.12014

    Article  PubMed  Google Scholar 

  15. Barbieri E, Ceccaroli P, Saltarelli R et al (2010) New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol 114:936–942. https://doi.org/10.1016/j.funbio.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  16. Vahdatzadeh M, Deveau A, Splivallo R (2015) The role of the microbiome of truffles in aroma formation: a meta-analysis approach. Appl Environ Microbiol 81:6946–6952. https://doi.org/10.1128/AEM.01098-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niimi J, Deveau A, Splivallo R (2021) Geographical-based variations in white truffle Tuber magnatum aroma is explained by quantitative differences in key volatile compounds. New Phytol. https://doi.org/10.1111/nph.17259

    Article  PubMed  Google Scholar 

  18. Antony-Babu S, Deveau A, Van Nostrand JD et al (2014) Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol 16:2831–2847. https://doi.org/10.1111/1462-2920.12294

    Article  CAS  PubMed  Google Scholar 

  19. Barbieri E, Guidi C, Bertaux J et al (2007) Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol 9:2234–2246. https://doi.org/10.1111/j.1462-2920.2007.01338.x

    Article  PubMed  Google Scholar 

  20. Napoli C, Mello A, Borra A et al (2010) Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds. New Phytol 185:237–247. https://doi.org/10.1111/j.1469-8137.2009.03053.x

    Article  CAS  PubMed  Google Scholar 

  21. Mello A, Ding G-C, Piceno YM et al (2013) Truffle brûlés have an impact on the diversity of soil bacterial communities. PLoS ONE 8:e61945. https://doi.org/10.1371/journal.pone.0061945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taschen E, Sauve M, Vincent B et al (2020) Insight into the truffle brûlé: tripartite interactions between the black truffle (Tuber melanosporum), holm oak (Quercus ilex) and arbuscular mycorrhizal plants. Plant Soil 446:577–594

    Article  CAS  Google Scholar 

  23. Frey-Klett P, Burlinson P, Deveau A et al (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609. https://doi.org/10.1128/MMBR.00020-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deveau A, Bonito G, Uehling J et al (2018) Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42:335–352. https://doi.org/10.1093/femsre/fuy008

    Article  CAS  PubMed  Google Scholar 

  25. Mello A, Miozzi L, Vizzini A et al (2010) Bacterial and fungal communities associated with Tuber magnatum-productive niches. Plant Biosyst 144:323–332. https://doi.org/10.1080/11263500903374724

    Article  Google Scholar 

  26. Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  27. Natural Resources Conservation Service, U. S. U. S. Department of Agriculture, National Soil National Soil Survey Center (2020) Field book for describing and sampling soils Version 3. 0

  28. Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  29. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  30. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols 315–322

  31. Benucci GMN, Bonito V, Bonito G (2019) Fungal, bacterial, and archaeal diversity in soils beneath native and introduced plants in Fiji, South Pacific. Microb Ecol 78:136–146. https://doi.org/10.1007/s00248-018-1266-1

    Article  CAS  PubMed  Google Scholar 

  32. Andrews S (2017) FastQC: a quality control tool for high throughput sequence data. 2010

  33. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin M (2019) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17: 10-12

  35. Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482. https://doi.org/10.1093/bioinformatics/btv401

    Article  CAS  PubMed  Google Scholar 

  36. Edgar R (2016) UCHIME2: improved chimera prediction for amplicon sequencing

  37. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  38. Gdanetz K, Benucci GMN, Vande Pol N, Bonito G (2017) CONSTAX: a tool for improved taxonomic resolution of environmental fungal ITS sequences. BMC Bioinformatics 18:538. https://doi.org/10.1186/s12859-017-1952-x

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liber JA, Bonito G, Benucci GMN (2021) CONSTAX2: improved taxonomic classification of environmental DNA markers. Bioinformatics. https://doi.org/10.1093/bioinformatics/btab347

    Article  PubMed  Google Scholar 

  40. Abarenkov K, Zirk A, Piirmann T, et al (2020) UNITE general FASTA release for eukaryotes. Version 8.2 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786370

  41. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Liu Y-X, Zhang N et al (2019) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37:676–684

    Article  CAS  PubMed  Google Scholar 

  43. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  44. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davis NM, Proctor DM, Holmes SP et al (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. https://doi.org/10.1186/s40168-018-0605-2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oksanen J, Blanchet FG, Friendly M, et al (2019) vegan: Community Ecology Package, R package version 2.5–6

  47. Simpson E (1949) Measurement of diversity. Nature, 163, 688 (1949). https://doi.org/10.1038/163688a0

  48. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  49. Paulson JN, Pop M, Bravo HC (2013) metagenomeSeq: statistical analysis for sparse high-throughput sequencing. Bioconductor package 1:191

    Google Scholar 

  50. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  51. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693

    Article  PubMed  Google Scholar 

  52. Martinez Arbizu P (2017) pairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0 0 1:

  53. De Caceres M, Jansen F, De Caceres MM (2016) Package `indicspecies’. indicators 8:1

  54. Foster ZSL, Sharpton TJ, Grünwald NJ (2017) Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol 13:e1005404. https://doi.org/10.1371/journal.pcbi.1005404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ritchie ME, Phipson B, Wu DI et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47–e47

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pavić A, Stanković S, Saljnikov E et al (2013) Actinobacteria may influence white truffle (Tuber magnatum Pico) nutrition, ascocarp degradation and interactions with other soil fungi. Fungal Ecol 6:527–538. https://doi.org/10.1016/j.funeco.2013.05.006

    Article  Google Scholar 

  57. Amicucci A, Barbieri E, Sparvoli V et al (2018) Microbial and pigment profile of the reddish patch occurring within Tuber magnatum ascomata. Fungal Biol 122:1134–1141. https://doi.org/10.1016/j.funbio.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  58. Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P, Pietramellara G (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868. https://doi.org/10.1016/j.soilbio.2004.02.004

    Article  CAS  Google Scholar 

  59. Mocali S, Agnelli A, Mengoni A, Chiellini C, Donato Alessi G, Corti G, Massaccesi L, De Feudis M, Cocco S, Cardelli V (2019) Exploring the links between bacterial communities and magnetic susceptibility in bulk soil and rhizosphere of beech (Fagus sylvatica L.). Appl Soil Ecol 138:69–79. https://doi.org/10.1016/j.apsoil.2019.02.008

    Article  Google Scholar 

  60. Marinari S, Marabottini R, Falsone G, Vianello G, Vittori AL, Agnelli A, Massaccesi L, Cocco S, Cardelli V, Serrani D, Corti G (2021) Mineral weathering and lessivage affect microbial community and enzyme activity in mountain soils. Appl Soil Ecol 167:104024. https://doi.org/10.1016/j.apsoil.2021.104024

    Article  Google Scholar 

  61. Xia Q, Rufty T, Shi W (2020) Soil microbial diversity and composition: links to soil texture and associated properties. Soil Biol Biochem 149:107953. https://doi.org/10.1016/j.soilbio.2020.107953

    Article  CAS  Google Scholar 

  62. Coller E, Cestaro A, Zanzotti R et al (2019) Microbiome of vineyard soils is shaped by geography and management. Microbiome 7:140. https://doi.org/10.1186/s40168-019-0758-7

    Article  PubMed  PubMed Central  Google Scholar 

  63. Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14:434–447. https://doi.org/10.1038/nrmicro.2016.59

    Article  CAS  PubMed  Google Scholar 

  64. Benucci GMN, Bonito GM (2016) The truffle microbiome: species and geography effects on bacteria associated with fruiting bodies of hypogeous Pezizales. Microb Ecol 72:4–8. https://doi.org/10.1007/s00248-016-0755-3

    Article  PubMed  Google Scholar 

  65. Massaccesi L, Benucci GMN, Gigliotti G et al (2015) Rhizosphere effect of three plant species of environment under periglacial conditions (Majella Massif, central Italy). Soil Biol Biochem 89:184–195. https://doi.org/10.1016/j.soilbio.2015.07.010

    Article  CAS  Google Scholar 

  66. O’Brien SL, Gibbons SM, Owens SM et al (2016) Spatial scale drives patterns in soil bacterial diversity. Environ Microbiol 18:2039–2051. https://doi.org/10.1111/1462-2920.13231

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  PubMed  Google Scholar 

  68. Garcia-Barreda S, Camarero JJ (2020) Tree ring and water deficit indices as indicators of drought impact on black truffle production in Spain. For Ecol Manag 475:118438. https://doi.org/10.1016/j.foreco.2020.118438

    Article  Google Scholar 

  69. Garcia-Barreda S, Camarero JJ, Vicente-Serrano SM, Serrano-Notivoli R (2020) Variability and trends of black truffle production in Spain (1970–2017): linkages to climate, host growth, and human factors. Agric For Meteorol 287:107951. https://doi.org/10.1016/j.agrformet.2020.107951

    Article  Google Scholar 

  70. Waring B, Hawkes CV (2018) Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient. FEMS Microbiol Ecol 94. https://doi.org/10.1093/femsec/fiy001

  71. Št’ovíček A, Azatyan A, Soares MIM, Gillor O (2017) The impact of hydration and temperature on bacterial diversity in arid soil mesocosms. Front Microbiol 8:1078. https://doi.org/10.3389/fmicb.2017.01078

    Article  PubMed  PubMed Central  Google Scholar 

  72. Benucci GMN, Longley R, Zhang P et al (2019) Microbial communities associated with the black morel cultivated in greenhouses. PeerJ 7:e7744. https://doi.org/10.7717/peerj.7744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maurice S, Arnault G, Nordén J et al (2021) Fungal sporocarps house diverse and host-specific communities of fungicolous fungi. ISME J. https://doi.org/10.1038/s41396-020-00862-1

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pacioni G, Leonardi M, Aimola P et al (2007) Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycol Res 111:1450–1460. https://doi.org/10.1016/j.mycres.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  75. Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279. https://doi.org/10.1016/j.jip.2008.01.008

    Article  PubMed  Google Scholar 

  76. Fu Y, Li X, Li Q et al (2016) Soil microbial communities of three major Chinese truffles in southwest China. Can J Microbiol 62:970–979. https://doi.org/10.1139/cjm-2016-0139

    Article  CAS  PubMed  Google Scholar 

  77. Chen J, Li J-M, Tang Y-J et al (2019) Chinese black truffle-associated bacterial communities of from different geographical regions with nitrogen fixing bioactivity. Front Microbiol 10:2515. https://www.frontiersin.org/articles/10.3389/fmicb.2019.02515/full

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ye L, Li Q, Fu Y et al (2018) Host species effects on bacterial communities associated with the fruiting bodies of Tuber species from the Sichuan Province in Southwest China. Mycol Prog 17:833–840. https://doi.org/10.1007/s11557-018-1397-2

    Article  Google Scholar 

  79. Hara S, Morikawa T, Wasai S et al (2019) Identification of nitrogen-fixing associated with roots of field-grown Sorghum by metagenome and proteome analyses. Front Microbiol 10:407. https://doi.org/10.3389/fmicb.2019.00407

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jeandroz S, Murat C, Wang Y et al (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the “true truffles.” J Biogeogr 35:815–829. https://doi.org/10.1111/j.1365-2699.2007.01851.x

    Article  Google Scholar 

  81. Barbieri E, Bertini L, Rossi I et al (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35. https://doi.org/10.1016/j.femsle.2005.04.027

    Article  CAS  PubMed  Google Scholar 

  82. Bedini S, Bagnoli G, Sbrana C et al (1999) Pseudomonads isolated from within fruit bodies of Tuber borchii are capable of producing biological control or phytostimulatory compounds in pure culture. Symbiosis 26:223–236

    Google Scholar 

  83. Dominguez JA, Martin A, Anriquez A, Albanesi A (2012) The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza 22:429–436. https://doi.org/10.1007/s00572-011-0420-0

    Article  CAS  PubMed  Google Scholar 

  84. Piñuela Y, Alday JG, Oliach D et al (2020) Use of inoculator bacteria to promote Tuber melanosporum root colonization and growth on Quercus faginea saplings. For Trees Livelihoods 11:792. https://doi.org/10.3390/f11080792

    Article  Google Scholar 

  85. Splivallo R, Vahdatzadeh M, Maciá-Vicente JG, Molinier V, Peter M, Egli S, Uroz S, Paolocci F, Deveau A (2019) Orchard conditions and fruiting body characteristics drive the microbiome of the black truffle Tuber aestivum. Front Microbiol 10:1437. https://doi.org/10.3389/fmicb.2019.0143

    Article  PubMed  PubMed Central  Google Scholar 

  86. Perlińska-Lenart U, Piłsyk S, Gryz E, Turło J, Hilszczańska D, Kruszewska JS (2020) Identification of bacteria and fungi inhabiting fruiting bodies of Burgundy truffle (Tuber aestivum Vittad.). Arch Microbiol 202:2727–2738. https://doi.org/10.1007/s00203-020-02002-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shaffer JP, U’Ren JM, Gallery RE et al (2017) An endohyphal bacterium (Bacteroidetes) alters carbon source use by (Species Complex, Nectriaceae). Front Microbiol 8:350. https://doi.org/10.3389/fmicb.2017.00350

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pinto-Figueroa EA, Seddon E, Yashiro E et al (2019) Archaeorhizomycetes spatial distribution in soils along wide elevational and environmental gradients reveal co-abundance patterns with other fungal saprobes and potential weathering capacities. Front Microbiol 10:656. https://doi.org/10.3389/fmicb.2019.00656

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rosling A, Cox F, Cruz-Martinez K et al (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879. https://doi.org/10.1126/science.1206958

    Article  CAS  PubMed  Google Scholar 

  90. Choma M, Bárta J, Šantrůčková H, Urich T (2016) Low abundance of Archaeorhizomycetes among fungi in soil metatranscriptomes. Sci Rep 6:38455. https://doi.org/10.1038/srep38455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sabella E, Nutricati E, Aprile A et al (2015) (2015) Arthrinium phaeospermum isolated from Tuber borchii ascomata: the first evidence for a “Mycorrhization Helper Fungus”? Mycol Progress 14:59. https://doi.org/10.1007/s11557-015-1083-6

    Article  Google Scholar 

  92. De Miguel AM, Águeda B, Sáez R, Sánchez S, Parladé J (2016) Diversity of ectomycorrhizal Thelephoraceae in Tuber melanosporum-cultivated orchards of Northern Spain. Mycorrhiza 26:227–236. https://doi.org/10.1007/s00572-015-0665-0

    Article  PubMed  Google Scholar 

  93. Benucci GMN, Raggi L, Albertini E, Grebenc T, Bencivenga M, Falcinelli M, Di Massimo G (2011) Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: composition, host influence and species replacement. FEMS Microbiol Ecol 76:170–184. https://doi.org/10.1111/j.1574-6941.2010.01039.x

    Article  CAS  PubMed  Google Scholar 

  94. Benucci GMN, Raggi L, Albertini E, Csorbai AG, Donnini D (2014) Assessment of ectomycorrhizal biodiversity in Tuber macrosporum productive sites. Mycorrhiza 24:281–292. https://doi.org/10.1007/s00572-013-0538-3

    Article  PubMed  Google Scholar 

  95. Zagriadskaia YA, Lysak LV, Sidorova II et al (2013) Bacterial complexes of the fruiting bodies and hyphosphere of certain basidiomycetes. Biol Bull Russ Acad Sci 40:358–364. https://doi.org/10.1134/s106235901304016x

    Article  CAS  Google Scholar 

  96. Deveau A, Antony-Babu S, Le Tacon F et al (2016) Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza 26:389–399. https://doi.org/10.1007/s00572-015-0679-7

    Article  CAS  PubMed  Google Scholar 

  97. El-Jurdi N, Ghannoum MA (2017) The mycobiome: impact on health and disease states. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec.FUNK-0045-2016

  98. Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database Collaboration (2011) The sequence read archive. Nucleic Acids Res 39:D19-21. https://doi.org/10.1093/nar/gkq1019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the truffle hunters Matteo Galletti, Gianfranco Berni, and Giuseppe Meocci who indicated the productive sites included in this study and helped to collect the truffles with their trained dogs.

Funding

Giorgio Marozzi was supported by a PhD fellowship for the project: “Contributo alla coltivazione del tartufo bianco: approccio metagenomico per lo studio delle comunità microbiche della micorrizzosfera” Project reference: 2013.0220.021 RICERCA SCIENTIFICA E TECNOLOGIA. Gregory Bonito is grateful for support from NSF grant 1946445.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: Gian Maria Niccolò Benucci, Giorgio Marozzi, Domizia Donnini. Methodology: Gian Maria Niccolò Benucci, Benedetta Turchetti, Emidio Albertini, Alberto Agnelli. Data curation: Gian Maria Niccolò Benucci; Giorgio Marozzi, Domizia Donnini, Leonardo Baciarelli Falini. Formal analysis: Gian Maria Niccolò Benucci; Giorgio Marozzi; Luisa Massaccesi. Resources: Domizia Donnini, Gregory Bonito, Emidio Albertini, Alberto Agnelli. Funding acquisition: Domizia Donnini, Gregory Bonito, Emidio Albertini. Investigation: Gian Maria Niccolò Benucci; Giorgio Marozzi; Luisa Massaccesi; Benedetta Turchetti. Writing—original draft: Gian Maria Niccolò Benucci, Giorgio Marozzi; Luisa Massaccesi. Writing—review and editing: Gian Maria Niccolò Benucci, Giorgio Marozzi; Luisa Massaccesi, Pietro Buzzini, Benedetta Turchetti; Alberto Agnelli; Emidio Albertini; Domizia Donnini.

Corresponding author

Correspondence to Benucci Gian Maria Niccolò.

Supplementary Information

Below is the link to the electronic supplementary material.

248_2021_1950_MOESM1_ESM.pdf

Supplementary file1 (PDF 1339 kb) Figure S1. Geographical position and pictures of sampled sites; Umbria: Site 1, in Citta’ di Castello, Perugia province and Site 2, in Ripabianca, Perugia province. Tuscany: Site 3, San Giovanni d’Asso, Siena province.

248_2021_1950_MOESM2_ESM.pdf

Supplementary file2 (PDF 33 kb) Figure S2 - Graphical view of decontamination analysis using the R package decontam and distribution of sample libraries for fungal and prokaryotic datasets. OTUs that were detected as TRUE contaminants on the base of their prevalence were removed from the datasets.

248_2021_1950_MOESM3_ESM.pdf

Supplementary file3 (PDF 41 kb) Figure S3 - Rarefaction curves highlighting differences in species richness soil and truffle samples.

248_2021_1950_MOESM4_ESM.pdf

Supplementary file4 (PDF 38 kb) Figure S4 - Principal coordinates analysis plots, using Bray–Curtis dissimilarity matrices, of fungal (A- C) and prokaryotic (B – D) communities on ST (A – B) and YR (C – D) datasets from truffle samples. Each plot reports the R2 values calculated with PERMANOVA analysis and dispersion analysis (betadisper) with a p-value < 0.05.

248_2021_1950_MOESM5_ESM.pdf

Suppl ementary file5 (PDF 78 kb) Figure S5 - Differential heat trees depicting the change in taxon abundance between 2014 and 2015 in Site 1 at genus taxonomic rank. The colors illustrate the log2 ratio median proportion: brown color indicates a significantly higher (p ≤ 0.05 after "fdr" correction) proportion of a taxon in 2014, green color indicates significantly higher proportion of a taxon in 2015. Node sizes are proportional to the number of OTUs within each taxon.

248_2021_1950_MOESM6_ESM.docx

Supplementary file6 (DOCX 9 kb) Table S1. Multivariate homogeneity of groups dispersions analysis (betadisper) results for both prokaryotic and fungal communities.

Supplementary file7 (XLSX 16 kb) Table S2. Indicators taxa associated with truffle and soil samples for prokaryotes.

Supplementary file8 (XLSX 46 kb) Table S3. Indicators taxa associated with soil from different sites for fungi.

Supplementary file 9 (txt 103  kb) R code to reproduce the data analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgio, M., Niccolò, B.G.M., Benedetta, T. et al. Fungal and Bacterial Diversity in the Tuber magnatum Ecosystem and Microbiome. Microb Ecol 85, 508–521 (2023). https://doi.org/10.1007/s00248-021-01950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01950-1

Keywords

Navigation