Skip to main content

Truffle Ecology: Genetic Diversity, Soil Interactions and Functioning

  • Chapter
  • First Online:
Mycorrhiza - Function, Diversity, State of the Art

Abstract

Truffles are fungi producing hypogeous fruiting bodies belonging to at least 13 phylogenetically distant orders. The most studied are “true truffles” belonging to the genus Tuber, which is the most economically important group. Truffle fruiting bodies are colonized by bacteria, yeasts, guest filamentous fungi and viruses that, all together, constitute the truffle microbiota. Research on the role of this community has demonstrated that bacteria contribute to truffle aroma. From the ecological point of view, truffle aroma attracts mycophagous animals, which in turn disperse and diffuse truffle spores in the soil, and mediates interactions with microorganisms and plant roots. Truffles have a heterothallic organization, whereby for truffle reproduction it is necessary that strains of opposite mating type meet. Regarding truffle development, the truffle ascocarps use carbon coming from the host plant and not from dead host tissues or soil organic matter as believed so far. In addition to form ectomycorrhizae with a wide diversity of host plants, some truffle species are able to form also arbutoid and orchid mycorrhizas.

Knowledge of truffle diversity, traditionally relied on the survey and molecular identification of fruiting bodies, moved over the years towards the survey of mycorrhizas and, recently, on the distribution in soil of the mycelium, with the determination of genets and mating types. The possibility of studying (micro)organisms directly in the field (metagenomics or environmental genomics) and the introduction of high-throughput sequencing techniques (454 pyrosequencing) have given a strong impulse to the study of the microbial communities interacting with truffles and their habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barbieri E, Gioacchini AM, Zambonelli A et al (2005) Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 19:3411–3415

    Article  CAS  PubMed  Google Scholar 

  • Belfiori B, Riccioni C, Paolocci F et al (2013) Mating type locus of Chinese black truffles reveals heterothallism and the presence of cryptic species within the Tuber indicum species complex. PLoS One 8:e82353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belfiori B, Riccioni C, Paolocci F et al (2016) Characterization of the reproductive mode and life cycle of the whitish truffle T. borchii. Mycorrhiza 26:515–527

    Article  CAS  PubMed  Google Scholar 

  • Bencivenga M, Urbani G (1992) Note sull’ecologia e sulla coltivazione del tartufo bianco (Tuber magnatum Pico). L’inf Agrar 48:64–69

    Google Scholar 

  • Benucci GM, Raggi L, Albertini E et al (2011) Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: composition, host influence and species replacement. FEMS Microbiol Ecol 76:170–184

    Article  CAS  PubMed  Google Scholar 

  • Benucci GMN, Bonito G, Baciarelli LF et al (2012) Mycorrhization of Pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza 22:383–392

    Article  PubMed  Google Scholar 

  • Berch SM, Bonito G (2014) Cultivation of Mediterranean species of Tuber (Tuberaceae) in British Columbia, Canada. Mycorrhiza 24:473–479

    Article  CAS  PubMed  Google Scholar 

  • Berch SM, Bonito G (2016) Truffle diversity (Tuber, Tuberaceae) in British Columbia. Mycorrhiza 26:587–594

    Article  PubMed  Google Scholar 

  • Bertault G, Raymond M, Berthomieu A et al (1998) Trifling variation in truffles. Nature 394:734–734

    Article  CAS  Google Scholar 

  • Bertini L, Rossi I, Zambonelli A et al (2006) Molecular identification of Tuber magnatum ectomycorrhizas in the field. Microbiol Res 161:59–64

    Article  CAS  PubMed  Google Scholar 

  • Bonito G, Smith ME (2016) General systematic position of the truffles: evolutionary theories. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the World. Soil Biol 47:3–18 (in press)

    Google Scholar 

  • Bonito G, Gryganskyi A, Vilgalys R et al (2010a) A global metaanalysis of Tuber ITS rDNA sequences: species diversity, host specificity, and long-distance dispersal. Mol Ecol 19:4994–5008

    Article  CAS  PubMed  Google Scholar 

  • Bonito G, Trappe JM, Rawlinson P et al (2010b) Improved resolution of major clades within Tuber and taxonomy of species within the Tuber gibbosum complex. Mycologia 102:1042–1057

    Article  PubMed  Google Scholar 

  • Bonito G, Brenneman T, Vilgalys R (2011a) Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae). Mycorrhiza 21(7):601–612

    Article  PubMed  Google Scholar 

  • Bonito G, Trappe JM, Donovan S et al (2011b) The Asian black truffle Tuber indicum can form ectomycorrhizas with North American host plants and complete its life cycle in non-native soils. Fungal Ecol 4:83–93

    Article  Google Scholar 

  • Bonito G, Smith ME, Nowak M et al (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One 8:e52765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonuso E, Zambonelli A, Bergemann SE et al (2010) Multilocus phylogenetic and coalescent analyses identify two cryptic species in the Italian bianchetto truffle, Tuber borchii Vittad. Conserv Genet 11:1453–1466

    Article  Google Scholar 

  • Bragato G (2014) Is truffle brûlé a case of perturbational niche construction? For Syst 23:349–356

    Google Scholar 

  • Bragato G, Vignozzi N, Pellegrini S et al (2010) Physical characteristics of the soil environment suitable for Tuber magnatum production in fluvial landscapes. Plant Soil 329:51–63

    Article  CAS  Google Scholar 

  • Callot G (1999) La truffe, la terre, la vie. INRA, Quae, p 210

    Google Scholar 

  • Ceruti A, Fontana A, Nosenzo C (2003) Le Specie Europee del Genere Tuber, Una revisione storica. Museo regionale di scienze Naturali, monografie XXXVII, Torino

    Google Scholar 

  • Chen J, Liu PG (2007) Tuber latisporum sp. nov. and related taxa, based on morphology and DNA sequence data. Mycologia 99:475–481

    Article  CAS  PubMed  Google Scholar 

  • Chevalier G, Desmas C, Frochot H et al (1979) L’espéce Tuber aestivum Vitt: I. Dèfinition. Mushroom Sci X (Part 1) 10:957–975

    Google Scholar 

  • Christopoulos V, Psoma P, Diamandis S (2013) Site characteristics of Tuber magnatum in Greece. Acta Mycol 48:27–32

    Article  Google Scholar 

  • Comandini O, Pacioni G (1997) Mycorrhizae of Asian black truffles, Tuber himalayense and T. indicum. Mycotaxon 63:77–86

    Google Scholar 

  • Di Massimo G, García-Montero LG, Bencivenga M et al (1996) Tuber indicum Cooke et Massee, un tartufo orientale simile a Tuber melanosporum Vitt. Micol Veg Mediterr 11:107–114

    Google Scholar 

  • Fan L, Yue SF (2013) Phylogenetic divergence of three morphologically similar truffles: Tuber sphaerosporum, T. sinosphaerosporum, and T. pseudosphaerosporum sp. nov. Mycotaxon 125:283–288

    Article  Google Scholar 

  • Fan L, Liu X, Cao J (2015) Tuber turmericum sp. nov., a Chinese truffle species based on morphological and molecular data. Mycol Prog 14:1–6

    Article  Google Scholar 

  • Fan L, Han L, Zhang PR et al (2016a) Molecular analysis of Chinese truffles resembling Tuber californicum in morphology reveals a rich pattern of species diversity with emphasis on four new species. Mycologia 108:344–353

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Zhang PR, Yan XY et al (2016b) Phylogenetic analyses of Chinese Tuber species that resemble T. borchii reveal the existence of the new species T. hubeiense and T. wumengense. Mycologia 108:354–362

    Article  PubMed  Google Scholar 

  • García-Montero LG, Di Massimo G, Manjón JL et al (2008) New data on ectomycorrhizae and soils of the Chinese truffles Tuber pseudoexcavatum and Tuber indicum, and their impact on truffle cultivation. Mycorrhiza 19:7–14

    Article  PubMed  Google Scholar 

  • García-Montero LG, Díaz P, Di Massimo G et al (2010) A review of research on Chinese Tuber species. Mycol Prog 9:315–335

    Article  Google Scholar 

  • García-Montero LG, Moreno D, Monleon VJ et al (2014) Natural production of Tuber aestivum in central Spain: Pinus spp. versus Quercus spp. brûles. For Syst 23:394–399

    Google Scholar 

  • Gardin L (2005) I tartufi minori in Toscana. Gli ambienti di crescita dei tartufi marzuolo e scorzone. Quad ARSIA 1:1–56

    Google Scholar 

  • Gryndler M, Trilčová J, Hršelová H et al (2013) Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach. Mycorrhiza 23:341–348

    Article  PubMed  Google Scholar 

  • Gryndler M, Cerná L, Bukovská P et al (2014) Tuber aestivum association with non-host roots. Mycorrhiza 24:603–610

    Article  PubMed  Google Scholar 

  • Gryndler M, Beskid O, Hršelová H et al (2015) Mutabilis in mutabili: spatiotemporal dynamics of a truffle colony in soil. Soil Biol Biochem 90:62–70

    Article  CAS  Google Scholar 

  • Guevara G, Bonito G, Trappe JM et al (2013) New North American truffles (Tuber spp.) and their ectomycorrhizal associations. Mycologia 105:194–209

    Article  PubMed  Google Scholar 

  • Hall IR, Haslam W (2012) Truffle cultivation in southern hemisphere. In: Zambonelli A, Bonito GM (eds) Edible ectomycorrhizal mushrooms. Soil Biol 34:191–208

    Google Scholar 

  • Hall IR, Zambonelli A (2012) The cultivation of mycorrhizal mushrooms—still the next frontier! In: Zhang J, Wang H, Chen M (eds) Mushroom science XVIII. China Agricultural Press, Beijing, pp 16–27

    Google Scholar 

  • Hall IR, Zambonelli A, Primavera F (1998) Ectomycorrhizal fungi with edible fruiting bodies 3. Tuber magnatum, Tuberaceae. Econ Bot 52:192–200

    Article  Google Scholar 

  • Hall I, Brown G, Zambonelli A (2007) Taming the truffle. The history, lore, and science of the ultimate mushroom. Timber Press, Portland

    Google Scholar 

  • Healy RA, Smith ME, Bonito GM et al (2013) High diversity and wide spread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol Ecol 22:1717–1732

    Article  CAS  PubMed  Google Scholar 

  • Healy RA, Zurier H, Bonito G et al (2016) Mycorrhizal detection of native and non-native truffles in a historic arboretum and the discovery of a new North American species, Tuber arnoldianum sp. nov. Mycorrhiza 26:781–792

    Article  CAS  PubMed  Google Scholar 

  • Hilszczańska D, Sierota Z, Palenzona M (2008) New Tuber species found in Poland. Mycorrhiza 18:223–226

    Article  PubMed  Google Scholar 

  • Huang JY, Hu HT, Shen WC (2009) Phylogenetic study of two truffles, Tuber formosanum and Tuber furfuraceum, identified from Taiwan. FEMS Microbiol Lett 294:157–171

    Article  CAS  PubMed  Google Scholar 

  • Iotti M, Lancellotti E, Hall I et al (2010) The ectomycorrhizal community in natural Tuber borchii grounds. FEMS Microbiol Ecol 72:250–260

    Article  CAS  PubMed  Google Scholar 

  • Iotti M, Leonardi M, Oddis M et al (2012a) Development and validation of a real time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiol 12:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iotti M, Piattoni F, Zambonelli A (2012b) Techniques for host plant inoculation with truffles and other edible ectomycorrhizal mushrooms. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms. Soil Biol 34:145–161

    Google Scholar 

  • Iotti M, Rubini A, Tisserant E et al (2012c) Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biol 116:261–275

    Article  CAS  PubMed  Google Scholar 

  • Iotti M, Leonardi M, Lancellotti E et al (2014) Spatio-temporal dynamic of Tuber magnatum mycelium in natural truffle grounds. PLoS One 9:e115921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iotti M, Piattoni F, Leonardi P et al (2016) First evidence for truffle production from plants inoculated with mycelial pure cultures. Mycorrhiza 26:793–798

    Article  PubMed  Google Scholar 

  • Jeandroz S, Murat C, Wang Y et al (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the “true truffles”. J Biogeogr 35:815–829

    Article  Google Scholar 

  • Kagan Zur V, Freeman S, Luzzati Y et al (2000) Emergence of the first black Périgord truffle (Tuber melanosporum) in Israel. Mycol Veg Mediterr 15:187–192

    Google Scholar 

  • Kinoshita A, Sasaki H, Nara K (2011) Phylogeny and diversity of Japanese truffles (Tuber spp.) inferred from sequences of four nuclear loci. Mycologia 103:779–794

    Article  PubMed  Google Scholar 

  • Krpata D, Peintner U, Langer I et al (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112:1069–1079

    Article  PubMed  Google Scholar 

  • Lalli G, Leonardi M, Oddis M et al (2015) Expanding the understanding of a forest ectomycorrhizal community by combining root tips and fruiting bodies: a case study of Tuber magnatum stands. Turk J Bot 39:527–534

    Article  Google Scholar 

  • Lancellotti E, Iotti M, Zambonelli A et al (2014) Characterization of Tuber borchii and Arbutus unedo mycorrhizas. Mycorrhiza 24:481–486

    Article  PubMed  Google Scholar 

  • Lanza B, Owczarek M, DeMarco A et al (2004) Evaluation of phytotoxicity and genotoxicity of substances produced by Tuber aestivum and distributed in the soil using Vicia faba root micronucleus test. Fresen Environ Bull 13:1410–1414

    CAS  Google Scholar 

  • Le Tacon F, Zeller B, Plain C et al (2013) Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a13C pulse-labeling technique. PLoS One 8:e64626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Tacon F, Rubini R, Murat C et al (2016) Certainties and uncertainties about the life cycle of the perigord black truffle (Tuber melanosporum Vittad.) Ann For Sci 73:105–117

    Article  Google Scholar 

  • Lefevre C (2013) Native and cultivated truffles of North America. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms. Soil Biol 34:209–226

    Google Scholar 

  • Leonardi M, Iotti M, Oddis M et al (2013) Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). Mycorrhiza 23:349–358

    Article  CAS  PubMed  Google Scholar 

  • Linde CC, Selmes H (2012) Genetic diversity and mating type distribution of Tuber melanosporum and their significance to truffle cultivation in artificially planted truffiéres in Australia. Appl Environ Microbiol 78:6534–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PG, Wang XH, Yu FQ et al (2003) Key taxa of larger members in higher fungi of biodiversity from China. Acta Bot Yunnan 25:285–296

    Google Scholar 

  • Lulli L, Pagliai M, Bragato G et al (1993) La combinazione dei caratteri che determinano il pedoambiente favorevole alla crescita del Tuber magnatum Pico nei suoli dei depositi marnosi dello Schlier in Acqualagna (Marche). Quad Sci Suolo 5:143–155

    Google Scholar 

  • Luo Q, Zhang J, Yan L et al (2011) Composition and antioxidant activity of water-soluble polysaccharides from Tuber indicum. J Med Food 14:1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marjanović Ž, Grebenc T, Marković M et al (2010) Ecological specificities and molecular diversity of truffles (genus Tuber) originating from mid-west of the Balkan Peninsula. Sydowia 62:67–87

    Google Scholar 

  • Marjanović Ž, Glišić A, Mutavdžić D et al (2015) Ecosystems supporting Tuber magnatum Pico production in Serbia experience specific soil environment seasonality that may facilitate truffle lifecycle completion. Appl Soil Ecol 95:179–190

    Article  Google Scholar 

  • Martin F, Kohler A, Murat C et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Mello A, Murat C, Vizzini A et al (2005) Tuber magnatum Pico, a species of limited geographical distribution: its genetic diversity inside and outside a truffleground. Environ Microbiol 7:55–65

    Article  CAS  PubMed  Google Scholar 

  • Mello A, Miozzi L, Vizzini A et al (2010) Bacterial and fungal communities associated with Tuber magnatum-productive niches. Plant Biosyst 144:323–332

    Article  Google Scholar 

  • Mello A, Napoli C, Murat C et al (2011) ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle-grounds. Mycologia 103:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Mello A, Ding GC, Piceno YM et al (2013) Truffle brûlés have an impact on the diversity of soil bacterial communities. PLoS One 8:e61945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mello A, Lumini E, Napoli C et al (2015) Arbuscular mycorrhizal fungal diversity in the Tuber melanosporum brûlé. Fungal Biol 19:518–527

    Article  CAS  Google Scholar 

  • Menta C, García-Montero LG, Pinto S et al (2014) Does the natural “microcosm” created by Tuber aestivum affect soil microarthropods? A new hypothesis based on Collembola in truffle culture. Appl Soil Ecol 84:31–37

    Article  Google Scholar 

  • Molinier V, Bouffaud ML, Castel T et al (2013) Monitoring the fate of a 30-year-old truffle orchard in Burgundy: from Tuber melanosporum to Tuber aestivum. Agrofor Syst 87:1439–1449

    Article  Google Scholar 

  • Molinier V, Murat C, Frochot H et al (2015) Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability. Environ Microbiol 17:3039–3050

    Article  PubMed  Google Scholar 

  • Molinier V, Murat C, Peter M et al (2016) SSR-based identification of genetic groups within European populations of Tuber aestivum Vittad. Mycorrhiza 26:99–110

    Article  PubMed  Google Scholar 

  • Murat C, Vizzini A, Bonfante P, Mello A (2005) Morphological and molecular typing of the below-ground fungal community in a natural Tuber magnatum truffle-ground. FEMS Microbiol Lett 245:307–313

    Article  CAS  PubMed  Google Scholar 

  • Murat C, Zampieri E, Vizzini A et al (2008) Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened! New Phytol 178:699–702

    Article  PubMed  Google Scholar 

  • Murat C, Rubini A, Riccioni C et al (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199:176–187

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Mello A, Borra A et al (2010) Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds. New Phytol 85:237–247

    Article  CAS  Google Scholar 

  • Orgiazzi A, Bianciotto V, Bonfante P et al (2013) 454 pyrosequencing analysis of fungal assemblages from geographically distant, disparate soils reveals spatial patterning and a core mycobiome. Diversity 51:73–98

    Article  CAS  Google Scholar 

  • Pacioni G (1991) Effects of Tuber metabolites on the rhizospheric environment. Mycol Res 95:1355–1358

    Article  CAS  Google Scholar 

  • Paolocci F, Rubini A, Riccioni C et al (2006) Reevaluation of the life cycle of Tuber magnatum. Appl Environ Microbiol 72:2390–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez F, Palfner G, Brunel N et al (2007) Synthesis and establishment of Tuber melanosporum Vitt. ectomycorrhizae on two Nothofagus species in Chile. Mycorrhiza 17:627–632

    Article  PubMed  Google Scholar 

  • Pfister DH, Kimbrough JW (2001) Discomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The mycota VII Part A. Systematics and evolution. Springer, New York, Berlin, Heidelberg, pp 257–281

    Google Scholar 

  • Piattoni F, Ori F, Amicucci A et al (2016) Interrelationships between wild boars (Sus scrofa) and truffles. In Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world. Soil Biol 47:375–389 (in press)

    Google Scholar 

  • Pinkas Y, Maimon M, Maimon E et al (2000) Inoculation, isolation and identification of Tuber melanosporum from old and new oak hosts in Israel. Mycol Res 104:472–477

    Article  Google Scholar 

  • Pruett G, Bruhn J, Mihail J (2008) Temporal dynamics of ectomycorrhizal community composition on root systems of oak seedlings infected with Burgundy truffle. Mycol Res 112:1344–1354

    Article  PubMed  Google Scholar 

  • Pruett GE, Bruhn JN, Mihail JD (2009) Greenhouse production of Burgundy truffle mycorrhizae on oak roots. New For 37:43–52

    Article  Google Scholar 

  • Ratti C, Iotti M, Zambonelli A et al (2016) Mycoviruses infecting true truffles. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world. Soil Biol 47:333–349

    Google Scholar 

  • Reyna S, García Barreda S (2014) Black truffle cultivation: a global reality. For Syst 23:317–328

    Google Scholar 

  • Riccioni C, Belfiori B, Rubini A et al (2008) Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180:466–478

    Article  CAS  PubMed  Google Scholar 

  • Riousset L, Riousset G, Chevalier G et al (2001) Truffes d’Europe et de Chine. Institut National de la Recherche Agronomique INRA, Paris

    Google Scholar 

  • Rubini A, Belfiori B, Riccioni C et al (2011a) Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. New Phytol 189:710–722

    Article  CAS  PubMed  Google Scholar 

  • Rubini A, Belfiori B, Riccioni C et al (2011b) Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants. New Phytol 189:723–735

    Article  PubMed  Google Scholar 

  • Rubini A, Riccioni C, Belfiori B et al (2014) Impact of the competition between mating types on the cultivation of Tuber melanosporum: Romeo and Juliet and the matter of space and time. Mycorrhiza 24:19–27

    Article  Google Scholar 

  • Salerni E, D’Aguanno M, Leonardi P et al (2014a) Ectomycorrhizal communities above and below ground and truffle productivity in a Tuber aestivum orchard. For Syst 23:329–338

    Google Scholar 

  • Salerni E, Iotti M, Leonardi P et al (2014b) Effects of soil tillage on Tuber magnatum development in natural truffières. Mycorrhiza 24(Suppl 1):79–87

    Article  Google Scholar 

  • Selosse M-A, Faccio A, Scappaticci P et al (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microbiol Ecol 47:416–426

    Article  CAS  Google Scholar 

  • Selosse M-A, Taschen E, Giraud T (2013) Do black truffles avoid sexual harassment by linking mating type and vegetative incompatibility? New Phytol 199:10–13

    Article  PubMed  Google Scholar 

  • Shamekh S, Donnini D, Zambonelli A et al (2009) Wild Finnish truffles. Yunnan Zhiwu Yanjiu 16:69–71

    Google Scholar 

  • Shamekh S, Grebenc T, Leisola M et al (2014) The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycol Prog 13:373–380

    Article  Google Scholar 

  • Song MS, Cao JZ, Yao YJ (2005) Occurrence of Tuber aestivum in China. Mycotaxon 91:75–80

    Google Scholar 

  • Splivallo R, Novero M, Bertea CM et al (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:3417–3424

    Article  CAS  Google Scholar 

  • Splivallo R, Ottonello S, Mello A et al (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    Article  CAS  PubMed  Google Scholar 

  • Staudenrausch S, Kaldorf M, Renker C (2005) Diversity of the ectomycorrhiza community at a uranium mining heap. Biol Fertil Soils 41:439–446

    Article  Google Scholar 

  • Stielow B, Menzel W (2010) Complete nucleotide sequence of TaV1, a novel totivirus isolated from a black truffle ascocarp (Tuber aestivum Vittad.). Arch Virol 155:2075–2078

    Google Scholar 

  • Stielow JB, Klenk HP, Menzel W (2011a) Complete genome sequence of the first endornavirus from the ascocarp of the ectomycorrhizal fungus Tuber aestivum Vittad. Arch Virol 156:343–345

    Article  CAS  PubMed  Google Scholar 

  • Stielow B, Klenk HP, Winter S et al (2011b) A novel Tuber aestivum (Vittad.) mitovirus. Arch Virol 156:1107–1110

    Article  CAS  PubMed  Google Scholar 

  • Stielow B, Bratek Z, Klenk HP et al (2012) A novel mitovirus from the hypogeous ectomycorrhizal fungus Tuber excavatum. Arch Virol 157:787–790

    Article  CAS  PubMed  Google Scholar 

  • Stobbe U, Buntgen U, Sproll L et al (2012) Spatial distribution and ecological variation of re-discovered German truffle habitats. Fungal Ecol 5:591–599

    Article  Google Scholar 

  • Stobbe U, Egli S, Tegel W et al (2013a) Potential and limitations of Burgundy truffle cultivation. Mini-review. Appl Microbiol Biotechnol 97:5215–5224

    Article  CAS  PubMed  Google Scholar 

  • Stobbe U, Stobbe A, Sproll L et al (2013b) New evidence for the symbiosis between Tuber aestivum and Picea abies. Mycorrhiza 23:669–673

    Article  CAS  PubMed  Google Scholar 

  • Streiblová E, Gryndlerová H, Gryndler M (2012) Truffle brûlé: an efficient fungal life strategy. FEMS Microbiol Ecol 80:1–8

    Article  PubMed  CAS  Google Scholar 

  • Taschen E, Sauve M, Taudiere A et al (2015) Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities. Environ Microbiol 17:2747–2761

    Article  PubMed  Google Scholar 

  • Trappe JM, Claridge AW (2010) The hidden life of truffles. Sci Am 302:78–84

    Article  PubMed  Google Scholar 

  • Turgeman T, Sitrit Y, Danai O et al (2012) Introduced Tuber aestivum replacing introduced Tuber melanosporum: a case study. Agrofor Syst 84:337–343

    Article  Google Scholar 

  • Urban A (2016) Truffles and small mammals. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world. Soil Biol 47:353–374

    Google Scholar 

  • Urban A, Neuner-Plattner I, Krisai-Greilhuber I et al (2004) Molecular studies on terricolous microfungi reveal novel anamorphs of two Tuber species. Mycol Res 108:749–758

    Article  CAS  PubMed  Google Scholar 

  • Vahdatzadeh M, Deveau, Splivallo R (2015) The role of the microbiome of truffles in aroma formation: a meta-analysis approach. Appl Environ Microbiol 81:6946–6952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasquez G, Gargano ML, Zambonelli A et al (2014) New distributive and ecological data on Tuber magnatum (Tuberaceae) in Italy. FL Mediterr 24:239–245

    Google Scholar 

  • Wang XH (2012) Truffle cultivation in China. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms. Soil Biol 34:227–240

    Google Scholar 

  • Wang Y, Tan ZM, Zhang DG et al (2006a) Phylogenetic and populational study of the Tuber indicum complex. Mycol Res 110:1034–1045

    Article  PubMed  Google Scholar 

  • Wang Y, Tan ZM, Zhang DC et al (2006b) Phylogenetic relationships between Tuber pseudoexcavatum, a Chinese truffle, and other Tuber species based on parsimony and distance analysis of four different gene sequences. FEMS Microbiol Lett 259:269–281

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tan ZM, Murat C et al (2007) Molecular taxonomy of Chinese truffles belonging to the Tuber rufum and Tuber puberulum groups. Fungal Divers 24:301–328

    CAS  Google Scholar 

  • Wang Y, Peigui L, Chen J et al (2008) China–a newly emerging truffle-producing nation. In: Reynal B (ed) Actes du colloques la culture de la truffe dans le monde. Imprimerie Georges Lachaise, Brive-La-Gaillarde, pp 35–44

    Google Scholar 

  • Wang XH, Benucci GMN, Xie XD et al (2013) Morphological, mycorrhizal and molecular characterization of Finnish truffles belonging to the Tuber anniae species-complex. Fungal Ecol 6:269–280

    Article  Google Scholar 

  • Wedén K, Danell E, Camacho FJ et al (2004) The population of the hypogeous fungus Tuber aestivum syn. T. uncinatum on the island of Gotland. Mycorrhiza 14:19–23

    Article  PubMed  Google Scholar 

  • Wedén C, Pettersson L, Danell E (2009) Truffle cultivation in Sweden: results from Quercus robur and Corylus avellana field trials on the island of Gotland. Scand J For Res 24:37–53

    Article  Google Scholar 

  • Yang MC (2001) Truffles in Southwest China. In: Corvoisier M, Olivier JM, Chevalier G (eds) Federation Française des trufficulteurs. Proceedings du Ve Congrès International Science et Culture de la Truffe, Aix-en-Provence, 4–6 Mars 1999. Paris, pp 248–249

    Google Scholar 

  • Zambonelli A, Iotti M (2001) Effects of fungicides on Tuber borchii and Hebeloma sinapizans ectomycorrhizas. Mycol Res 105:611–614

    Article  Google Scholar 

  • Zambonelli A, Tibiletti E, Pisi A (1997) Caratterizzazione anatomo-morfologica delle micorriza di Tuber indicum Cooke and Massee su Pinus pinea L. and Quercus cerris L. Micol Ital 1:29–36

    Google Scholar 

  • Zambonelli A, Iotti M, Rossi I et al (2000) Interactions between Tuber borchii and other ectomycorrhizal fungi in a field plantation. Mycol Res 104:698–702

    Article  Google Scholar 

  • Zambonelli A, Iotti M, Barbieri E et al (2009) The microbial communities and fruiting of edible ectomycorrhizal mushrooms. Yunnan Zhiwu Yanjiu 16:81–85

    Google Scholar 

  • Zambonelli A, Iotti M, Boutahir S et al (2012a) Ectomycorrhizal fungal communities of edible ectomycorrhizal mushrooms. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms, Soil Biol 34:105–124

    Google Scholar 

  • Zambonelli A, Iotti M, Piattoni F (2012b) Chinese Tuber aestivum sensu lato in Europe. Open Mycol J 6:22–26

    Article  Google Scholar 

  • Zambonelli A, Perini C, Pacioni G (2012c) Progetto MAGNATUM. Monitoraggio delle Attività di Gestione delle Tartufaie Naturali di Tuber magnatum. Risultati e consigli pratici. Alimat Edizioni Cesena

    Google Scholar 

  • Zambonelli A, Iotti M, Hall I (2015) Current status of truffle cultivation: recent results and future perspectives. Micol Ital 44:31–40

    Google Scholar 

  • Zampieri E, Murat C, Cagnasso M et al (2010) Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle-ground. FEMS Microbiol Ecol 71:43–49

    Article  CAS  PubMed  Google Scholar 

  • Zampieri E, Rizzello R, Bonfante P et al (2012) The detection of mating type genes of Tuber melanosporum in productive and non productive soils. Appl Soil Ecol 57:9–15

    Article  Google Scholar 

  • Zampieri E, Chiapello M, Daghino S et al (2016) Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Sci Rep 6:25773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JP, Liu PG, Chen J (2012) Tuber sinoaestivum sp. nov. an edible truffle from southwestern China. Mycotaxon 122:73–82

    Article  Google Scholar 

  • Zhao L, Wang K, Yang R et al (2012) Antioxidant activity of the water-soluble and alkali-soluble polysaccharides from Chinese Truffle Tuber sinense. J Anim Vet Adv 11:1753–1756

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonietta Mello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mello, A., Zampieri, E., Zambonelli, A. (2017). Truffle Ecology: Genetic Diversity, Soil Interactions and Functioning. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Function, Diversity, State of the Art. Springer, Cham. https://doi.org/10.1007/978-3-319-53064-2_11

Download citation

Publish with us

Policies and ethics