Skip to main content

Advertisement

Log in

The Truffle Microbiome: Species and Geography Effects on Bacteria Associated with Fruiting Bodies of Hypogeous Pezizales

  • Notes and Short Communications
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Fungi that produce their fruiting bodies underground within the soil profile are known commonly as truffles. Truffle fruiting bodies harbor a diverse but poorly understood microbial community of bacteria, yeasts, and filamentous fungi. In this study, we used next-generation 454 amplicon pyrosequencing of the V1 and V4 region of the bacterial 16S ribosomal DNA (rDNA) in order to characterize and compare effects of truffle species and geographic origin on the truffle microbiome. We compared truffle microbiomes of the glebal tissue for eight truffle species belonging to four distinct genera within the Pezizales: Tuber, Terfezia, Leucangium, and Kalapuya. The bacterial community within truffles was dominated by Proteobacteria, Bacterioides, Actinobacteria, and Firmicutes. Bacterial richness within truffles was quite low overall, with between 2–23 operational taxonomic units (OTUs). Notably, we found a single Bradyrhizobium OTU to be dominant within truffle species belonging to the genus Tuber, irrespective of geographic origin, but not in other truffle genera sampled. This study offers relevant insights into the truffle microbiome and raises questions concerning the recruitment and function of these fungal-associated bacteria consortia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Smith M, Bonito G (2013) Systematics and ecology of ectomycorrhizal mushrooms. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms: current knowledge and future prospects. Soil Biology Series 34, Springer-Verlag Berlin Heidelberg, pp 17–39. doi:10.1007/978-3-642-33823-6_2

  2. Benucci GMN, Baciarelli Falini L, Bencivenga M, Donnini D (2013) Truffles, timber, food, and fuel: sustainable approaches for multi-cropping truffles and economically important plants. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms: current knowledge and future prospects. Soil Biology Series 34, Springer-Verlag Berlin Heidelberg, pp 265–280. doi:10.1007/978-3-642-33823-6_15

  3. Frank B (2005) On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A.B. Frank’s classic paper of 1885). Mycorrhiza 15:267–275. doi:10.1007/s00572-004-0329-y

    Article  CAS  PubMed  Google Scholar 

  4. Bonito GM, Gryganskyi AP, Trappe JM, Vilgalys R (2010) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol 19:4994–5008. doi:10.1111/j.1365-294X.2010.04855.x

    Article  CAS  PubMed  Google Scholar 

  5. Bonito G, Smith ME, Nowak M et al (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified Southern hemisphere sister lineage. PLoS One 8:e52765. doi:10.1371/journal.pone.0052765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbieri E, Bertini L, Rossi I et al (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35. doi:10.1016/j.femsle.2005.04.027

    Article  CAS  PubMed  Google Scholar 

  7. Buzzini P, Gasparetti C, Turchetti B et al (2005) Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Arch Microbiol 184:187–193. doi:10.1007/s00203-005-0043-y

    Article  CAS  PubMed  Google Scholar 

  8. Pacioni G, Leonardi M, Aimola P et al (2007) Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycol Res 111:1450–60. doi:10.1016/j.mycres.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  9. Quandt CA, Kohler A, Hesse CN et al (2015) Metagenome sequence of Elaphomyces granulatus from sporocarp tissue reveals Ascomycota ectomycorrhizal fingerprints of genome expansion and a Proteobacteria -rich microbiome. Environ Microbiol 17:2952–2968. doi:10.1111/1462-2920.12840

    Article  CAS  PubMed  Google Scholar 

  10. Splivallo R, Deveau A, Valdez N et al (2015) Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol 17:2647–2660. doi:10.1111/1462-2920.12521

    Article  PubMed  Google Scholar 

  11. Rivera CS, Blanco D, Oria R, Venturini ME (2010) Diversity of culturable microorganisms and occurrence of Listeria monocytogenes and Salmonella spp. in Tuber aestivum and Tuber melanosporum ascocarps. Food Microbiol 27:286–293. doi:10.1016/j.fm.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Gryndler M, Soukupová L, Hršelová H et al (2013) A quest for indigenous truffle helper prokaryotes. Environ Microbiol Rep 5:346–352. doi:10.1111/1758-2229.12014

    Article  PubMed  Google Scholar 

  13. Sbrana C, Agnolucci M, Bedini S et al (2002) Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiol Lett 211:195–201. doi:10.1016/S0378-1097(02)00712-7

    Article  CAS  PubMed  Google Scholar 

  14. Barbieri E, Guidi C, Bertaux J et al (2007) Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol 9:2234–46. doi:10.1111/j.1462-2920.2007.01338.x

    Article  PubMed  Google Scholar 

  15. Pavić A, Stanković S, Saljnikov E et al (2013) Actinobacteria may influence white truffle (Tuber magnatum Pico) nutrition, ascocarp degradation and interactions with other soil fungi. Fungal Ecol 6:527–538. doi:10.1016/j.funeco.2013.05.006

    Article  Google Scholar 

  16. Antony-Babu S, Deveau A, Van Nostrand JD et al (2014) Black truffle—associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol 16:2831–2847. doi:10.1111/1462-2920.12294

    Article  CAS  PubMed  Google Scholar 

  17. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  18. Bonito G, Reynolds H, Roberson MS et al (2014) Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol Ecol 23:3356–3370. doi:10.1111/mec.12821

    Article  PubMed  Google Scholar 

  19. Bonito G, Trappe J, Rawlinson P, Vilgalys R (2010) Improved resolution of major clades within Tuber and taxonomy of species within the Tuber gibbosum complex. Mycologia 101(5):1042–1057

  20. Trappe M, Trappe J, Bonito G (2010) Kalapuya brunnea gen. & sp. nov. and its relationship to the other sequestrate genera in Morchellaceae. Mycologia 101(5):1058–1065

  21. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39:D19–D21. doi:10.1093/nar/gkq1019

    Article  CAS  PubMed  Google Scholar 

  22. Benson DA, Karsch-Mizrachi I, Clark K et al (2012) GenBank. Nucleic Acids Res 40:D48–D53. doi:10.1093/nar/gkr1202

    Article  CAS  PubMed  Google Scholar 

  23. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. doi:10.1093/bioinformatics/btr026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) Correspondence QIIME allows analysis of high-throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat Publ Group 7:335–336. doi:10.1038/nmeth0510-335

    CAS  Google Scholar 

  25. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  27. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. doi:10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  30. Hill OM (1973) Ecological society of America. Ecology 54:427–432

    Article  Google Scholar 

  31. Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Article  Google Scholar 

  32. R Core Team (2015) R: A Language and Environment for Statistical Computing

  33. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust J Ecol 26:32–46

    Google Scholar 

  35. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x

    Article  PubMed  Google Scholar 

  36. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan

  37. Waksman SA (1927) Principles of soil microbiology. Williams & Wilkins, Baltimore, p 897

    Google Scholar 

  38. Aspray TJ, Frey-Klett P, Jones JE et al (2006) Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 16:533–541. doi:10.1007/s00572-006-0068-3

    Article  PubMed  Google Scholar 

  39. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. doi:10.1111/j.1469-8137.2007.02191.x

    Article  CAS  PubMed  Google Scholar 

  40. Frey-Klett P, Burlinson P, Deveau A et al (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609. doi:10.1128/MMBR.00020-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888. doi:10.1038/nature03997

    Article  CAS  PubMed  Google Scholar 

  42. Barbieri E, Ceccaroli P, Saltarelli R et al (2010) New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol 114:936–942. doi:10.1016/j.funbio.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  43. Itakura M, Saeki K, Omori H et al (2009) Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. ISME J 3:326–339. doi:10.1038/ismej.2008.88

    Article  CAS  PubMed  Google Scholar 

  44. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2(7):e92. doi:10.1371/journal.pcbi.0020092

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roesch LF, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290. doi:10.1038/ismej.2007.53

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge Michigan State University and AgBioResearch for research support. We are grateful to our following colleagues for helping us to obtain fresh truffles for this research: Yun Wang (T. indicum), Marcos Morcillo (T. melanosporum), Charles Lefevre (T. oregonense & T. gibbosum), Matt Trappe (Leucangium and Kalapuya), Timothy Brenneman (T. lyonii), and Khalid Hameed (Terfezia). We thank Aurélie Deveau for providing Bradyrhizobium reference sequences from the Antony-Babu study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Bonito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Bar-plots of all replicate samples used in the study by 454 pyrosequencing of the V1 and V4 region of the 16S bacterial gene. Two different OTUs (Operational Taxonomic Units) at 97 % sequence similarity, belonged to the bacteria genera Bradyrhizobium (within Tuber oregonense, and Tuber gibbosum) and Jantinobacterium (within Tuber oregonense), based on V1 and V4 datasets, respectively. (GIF 94 kb)

High resolution image (EPS 103 kb)

Table S1

(DOCX 4 kb)

Table S2

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benucci, G.M.N., Bonito, G. The Truffle Microbiome: Species and Geography Effects on Bacteria Associated with Fruiting Bodies of Hypogeous Pezizales. Microb Ecol 72, 4–8 (2016). https://doi.org/10.1007/s00248-016-0755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0755-3

Keywords

Navigation