Skip to main content
Log in

Molecular Detection and Spatiotemporal Characterization of Labyrinthulomycete Protist Diversity in the Coastal Waters Along the Pearl River Delta

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The heterotrophic labyrinthulomycete protists have long been known to play an important role in the nutrient cycling of coastal seawater. Yet, their spatiotemporal abundance and diversity in polluted coastal waters remain poorly discussed, due in part to the paucity of a rapid detection method. To this end, we developed a qPCR detection method based on a newly designed primer pair targeting their 18S rRNA gene. Using this method, we studied the population dynamics of labyrinthulomycete protists in nutrient-rich (Shenzhen Bay) and low-nutrient (Daya) coastal habitats along the Pearl River Delta. We found a significantly (P < 0.05) higher abundance of Labyrinthulomycetes in the Shenzhen bay (average 3455 gene copies mL−1) than that in Daya Bay (average 378 gene copies mL−1). Their abundance gradient positively correlated (P < 0.05) with the levels of inorganic nitrogen and phosphates. Further characterization of the molecular diversity of these protists in Shenzhen Bay using different primer sets revealed the presence of several genera besides a large number of unclassified OTUs. Regardless of the primer biases, our results show significant (P < 0.05) spatiotemporal changes in the molecular abundance and diversity of these heterotrophic protists. Overall, this study provides a rapid molecular detection tool for Labyrinthulomycetes and expands our current understanding of their dynamics controlled by physicochemical gradients in coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caron DA, Countway PD, Jones AC, Kim DY, Schnetzer A (2012) Marine protistan diversity. Annu Rev Mar Sci 4:467–493

    Article  Google Scholar 

  2. Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464

    Article  Google Scholar 

  3. Bennett RM, Honda D, Beakes GW, Thines M (2017) Labyrinthulomycota. In: Archibald JM, Simpson AGB, Slamovits CH, Margulis L, Melkonian M, Chapman DJ, Corliss JO (eds) Handbook of the protists. Springer International Publishing, Cham, pp 1–36

    Google Scholar 

  4. Pan J, del Campo J, Keeling PJ (2017) Reference tree and environmental sequence diversity of Labyrinthulomycetes. J Eukaryot Microbiol 64:88–96

    Article  PubMed  Google Scholar 

  5. Raghukumar S (2017) Fungi in coastal and oceanic marine ecosystems. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-54304-8

    Book  Google Scholar 

  6. Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183:113–131

    Article  Google Scholar 

  7. Liu Y, Singh P, Sun Y, Luan S, Wang G (2014) Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China. Appl Microbiol Biotechnol 98:3241–3255

    Article  PubMed  CAS  Google Scholar 

  8. Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2009) Extracellular enzymes produced by marine eukaryotes, Thraustochytrids. Biosci Biotechnol Biochem 73:180–182

    Article  PubMed  CAS  Google Scholar 

  9. Nagano N, Matsui S, Kuramura T, Taoka Y, Honda D, Hayashi M (2011) The distribution of extracellular cellulase activity in marine Eukaryotes, thraustochytrids. Mar Biotechnol 13:133–136

    Article  CAS  Google Scholar 

  10. Bochdansky AB, Clouse MA, Herndl GJ (2017) Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J 11:362–373

    Article  PubMed  Google Scholar 

  11. Li Q, Wang X, Liu X, Jiao N, Wang G (2013) Abundance and novel lineages of thraustochytrids in Hawaiian waters. Microb Ecol 66:823–830

    Article  PubMed  Google Scholar 

  12. Liu Y, Singh P, Liang Y, Li J, Xie N, Song Z et al (2017) Abundance and molecular diversity of thraustochytrids in coastal waters of southern China. FEMS Microbiol Ecol 93(6). https://doi.org/10.1093/femsec/fix070

  13. Kimura H, Sato M, Sugiyama C, Naganuma T (2001) Coupling of thraustochytrids and POM, and of bacterio- and phytoplankton in a semi-enclosed coastal area: implication for different substrate preference by the planktonic decomposers. Aquat Microb Ecol 25:293–300

    Article  Google Scholar 

  14. Marchan LF, Chang KJL, Nichols PD, Polglase JL, Mitchell WJ, Gutierrez T (2017) Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production. J Appl Phycol 29:1–13. https://doi.org/10.1007/s10811-017-1149-8

    Article  CAS  Google Scholar 

  15. Ueda M, Nomura Y, Doi K, Nakajima M, Honda D (2015) Seasonal dynamics of culturable thraustochytrids (Labyrinthulomycetes, Stramenopiles) in estuarine and coastal waters. Aquat Microb Ecol 74:187–204

    Article  Google Scholar 

  16. Bongiorni L, Dini F (2002) Distribution and abundance of thraustochytrids in different Mediterranean coastal habitats. Aquat Microb Ecol 30(1):49–56

    Article  Google Scholar 

  17. Damare V, Raghukumar S (2008) Abundance of thraustochytrids and bacteria in the equatorial Indian Ocean, in relation to transparent exopolymeric particles (TEPs). FEMS Microbiol Ecol 65:40–49

    Article  PubMed  CAS  Google Scholar 

  18. Raghukumar S, Schaumann K (1993) An epifluorescence microscopy method for direct detection and enumeration of the fungilike marine protists, the thraustochytrids. Limnol Oceanogr 38:182–187

    Article  Google Scholar 

  19. Nakai R, Naganuma T (2015) Diversity and ecology of thraustochytrid protists in the marine environment. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F (eds) Marine protists: diversity and dynamics. Springer Japan, Tokyo, pp 331–346

    Chapter  Google Scholar 

  20. Nakai R, Nakamura K, Jadoon WA, Kashihara K, Naganuma T (2013) Genus-specific quantitative PCR of thraustochytrid protists. Mar Ecol Prog 486:1–12

    Article  CAS  Google Scholar 

  21. Liu Q, Allam B, Collier JL (2009) Quantitative real-time PCR assay for QPX (Thraustochytriidae), a parasite of the hard clam (Mercenaria mercenaria). Appl Environ Microbiol 75:4913–4918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wu M, Song L, Ren J, Kan J, Qian P (2004) Assessment of microbial dynamics in the Pearl River Estuary by 16S rRNA terminal restriction fragment analysis. Cont Shelf Res 24:1925–1934

    Article  Google Scholar 

  23. Li L, Singh P, Liu Y, Pan S, Wang G (2014) Diversity and biochemical features of culturable fungi from the coastal waters of Southern China. AMB Express 4:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Singh P, Liu Y, Li L, Wang G (2014) Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biotechnol 98(13):5789–5805

    Article  PubMed  CAS  Google Scholar 

  25. He Y, Sen B, Zhou S, Xie N, Zhang Y, Zhang J, Wang G (2017) Distinct seasonal patterns of bacterioplankton abundance and dominance of phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao coastal waters off the Bohai Sea. Front Microbiol 8(1579). https://doi.org/10.3389/fmicb.2017.01579

  26. Fan KW, Jiang Y, Ho LT (2009) Differentiation in fatty acid profiles of pigmented and nonpigmented Aurantiochytrium isolated from Hong Kong mangroves. J Agric Food Chem 57(14):6334–6341

    Article  PubMed  CAS  Google Scholar 

  27. Stokes NA, Ragone Calvo LM, Reece KS et al (2002) Molecular diagnostics, field validation, and phylogenetic analysis of Quahog Parasite Unknown (QPX), a pathogen of the hard clam Mercenaria mercenaria. Dis Aquat Org 52(3):233–247

    Article  CAS  Google Scholar 

  28. Stoeck T, Bass D, Nebel M (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(s1):21–31

    Article  PubMed  CAS  Google Scholar 

  29. Huang MM, Arnheim N, Goodman MF (1992) Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res 20:4567–4573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ayyadevara S, Thaden JJ, Shmookler Reis RJ (2000) Discrimination of primer 3′-nucleotide mismatch by taq DNA polymerase during polymerase chain reaction. Anal Biochem 284:11–18

    Article  PubMed  CAS  Google Scholar 

  31. Sitepu IR, Sestric R, Ignatia L, Levin D, German JB, Gillies LA, Almada LAG, Boundy-Mills KL (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour Technol 144:360–369

    Article  PubMed  CAS  Google Scholar 

  32. Jain R, Raghukumar S, Tharanathan R, Bhosle NB (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar Biotechnol 7:184–192

    Article  CAS  Google Scholar 

  33. Logares R, Audic S, Santini S, Pernice MC, de Vargas C, Massana R (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 6(10):1823–1833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Caporaso JG, Kuczynski J, Stombaugh J (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL https://www.R-project.org/

    Google Scholar 

  36. Stamatakis A (2006) Raxml-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  PubMed  CAS  Google Scholar 

  37. Naganuma T, Takasugi H, Kimura H (1998) Abundance of thraustochytrids in coastal plankton. Mar Ecol Prog 162:105–110

    Article  Google Scholar 

  38. Takao Y, Tomaru Y, Nagasaki K, Sasakura Y, Yokoyama R, Honda D (2007) Fluorescence in situ hybridization using 18S rRNA-targeted probe for specific detection of thraustochytrids (Labyrinthulomycetes). Plankton Benthos Res 2(2):91–97

    Article  Google Scholar 

  39. Raghukumar S, Ramaiah N, Raghukumar C (2001) Dynamics of thraustochytrid protists in the water column of the Arabian Sea. Aquat Microb Ecol 24:297–299

    Article  Google Scholar 

  40. Bongiorni L, Pusceddu A, Danovaro R (2005) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41(3):299–305

    Article  Google Scholar 

  41. Duan Y, Sen B, Xie N, Paterson J, Chen Z, Wang G (2018) Flow cytometry for rapid enumeration and biomass quantification of thraustochytrids in coastal seawaters. Microb Environ (Accepted)

  42. Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C et al (2017) Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol 15(1):6–20

    Article  PubMed  CAS  Google Scholar 

  43. Massana R, Pedrós-Alió C (2008) Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11(3):213–218

    Article  PubMed  Google Scholar 

  44. Grossmann L, Jensen M, Heider D, Jost S, Glücksman E, Hartikainen H et al (2016) Protistan community analysis: key findings of a large-scale molecular sampling. ISME J 10(9):2269–2279

    Article  PubMed  PubMed Central  Google Scholar 

  45. de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:29223618–29223625

    Article  CAS  Google Scholar 

  46. Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C et al (2015) Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol 17(10):4035–4049

    Article  PubMed  CAS  Google Scholar 

  47. Collado-Mercado E, Radway JC, Collier JL (2010) Novel uncultivated Labyrinthulomycetes revealed by 18S rDNA sequences from seawater and sediment samples. Aquat Microb Ecol 58:215–228

    Article  Google Scholar 

  48. Chaung KC, Chu CY, Su YM (2012) Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10. AMB Express 2(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46:637–647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was partially supported by the National Key R&D Program of China (grant # 2017YFC1404500) and NSFC (grant # 31670044 and 91751115). The views expressed herein are those of the authors and do not represent the views of the funding agencies or any of its subagencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyi Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(DOCX 11570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, M., Sen, B., Wang, Q. et al. Molecular Detection and Spatiotemporal Characterization of Labyrinthulomycete Protist Diversity in the Coastal Waters Along the Pearl River Delta. Microb Ecol 77, 394–405 (2019). https://doi.org/10.1007/s00248-018-1235-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1235-8

Keywords

Navigation