Skip to main content
Log in

Optimizing neonatal cardiac imaging (magnetic resonance/computed tomography)

  • Neonatal imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) and CT perform an important role in the evaluation of neonates with congenital heart disease (CHD) when echocardiography is not sufficient for surgical planning or postoperative follow-up. Cardiac MRI and cardiac CT have complementary applications in the evaluation of cardiovascular disease in neonates. This review focuses on the indications and technical aspects of these modalities and special considerations for imaging neonates with CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu W, He J, Shao X (2020) Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017. Medicine 99:e20593

    Article  PubMed  PubMed Central  Google Scholar 

  2. Valente do Amaral Lopes SA, Guimarães ICB, Fontes de Oliva Costa S et al (2018) Mortality for critical congenital heart diseases and associated risk factors in newborns. A cohort study. Arq Bras Cardiol 111:666–673

  3. Wang T, Chen L, Yang T et al (2019) Congenital heart disease and risk of cardiovascular disease: a meta-analysis of cohort studies. J Am Heart Assoc 8:e012030

    Article  PubMed  PubMed Central  Google Scholar 

  4. Holst KA, Said SM, Nelson TJ et al (2017) Current interventional and surgical management of congenital heart disease: specific focus on valvular disease and cardiac arrhythmias. Circ Res 120:1027–1044

    Article  CAS  PubMed  Google Scholar 

  5. Krishnamurthy R, Lee EY (2011) Congenital cardiovascular malformations: noninvasive imaging by MRI in neonates. Magn Reson Imaging Clin N Am 19:813–822

    Article  PubMed  Google Scholar 

  6. Tsai I-C, Chen M-C, Jan S-L et al (2008) Neonatal cardiac multidetector row CT: why and how we do it. Pediatr Radiol 38:438–451

    Article  PubMed  Google Scholar 

  7. Krishnamurthy R (2010) Neonatal cardiac imaging. Pediatr Radiol 40:518–527

    Article  PubMed  Google Scholar 

  8. Valsangiacomo Buechel ER, Grosse-Wortmann L, Fratz S et al (2015) Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the imaging working group of the AEPC and the cardiovascular magnetic resonance section of the EACVI. Eur Heart J Cardiovasc Imaging 16:281–297

    Article  CAS  PubMed  Google Scholar 

  9. Chan FP (2009) MR and CT imaging of the pediatric patient with structural heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2009:99–105

    Article  Google Scholar 

  10. Kellenberger CJ, Yoo S-J, Büchel ERV (2007) Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiographics 27:5–18

    Article  PubMed  Google Scholar 

  11. Glöckler M, Halbfaβ J, Koch A et al (2013) Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease — a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 82:436–442

    Article  PubMed  Google Scholar 

  12. Schooler GR, Cravero JP, Callahan MJ (2021) Assessing and conveying risks and benefits of imaging in neonates using ionizing radiation and sedation/anesthesia. Pediatr Radiol. https://doi.org/10.1007/s00247-021-05138-0

  13. Geiger J, Callaghan FM, Burkhardt BEU et al (2020) Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children. Pediatr Radiol 51:1503–1517

    Article  PubMed  PubMed Central  Google Scholar 

  14. Han BK, Rigsby CK, Hlavacek A et al (2015) Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of [sic] Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 9:475–492

  15. Han BK, Rigsby CK, Leipsic J et al (2015) Computed tomography imaging in patients with congenital heart disease, part 2: technical recommendations. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of [sic] Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 9:493–513

  16. Chan FP, Hanneman K (2015) Computed tomography and magnetic resonance imaging in neonates with congenital cardiovascular disease. Semin Ultrasound CT MR 36:146–160

    Article  PubMed  Google Scholar 

  17. DiGeorge NW, El-Ali AM, White AM et al (2020) Pediatric cardiac CT and MRI: considerations for the general radiologist. AJR Am J Roentgenol 215:1464–1473

    Article  PubMed  Google Scholar 

  18. Nageotte SJ, Lederman RJ, Ratnayaka K (2020) MRI catheterization: ready for broad adoption. Pediatr Cardiol 41:503–513

    Article  PubMed  PubMed Central  Google Scholar 

  19. Veeram Reddy SR, Arar Y, Zahr RA et al (2020) Invasive cardiovascular magnetic resonance (iCMR) for diagnostic right and left heart catheterization using an MR-conditional guidewire and passive visualization in congenital heart disease. J Cardiovasc Magn Reson 22:20

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ratnayaka K, Kanter JP, Faranesh AZ et al (2017) Radiation-free CMR diagnostic heart catheterization in children. J Cardiovasc Magn Reson 19:65

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rangamani S, Varghese J, Li L et al (2012) Safety of cardiac magnetic resonance and contrast angiography for neonates and small infants: a 10-year single-institution experience. Pediatr Radiol 42:1339–1346

    Article  PubMed  Google Scholar 

  22. Dalal PG, Porath J, Parekh U et al (2016) A quality improvement project to reduce hypothermia in infants undergoing MRI scanning. Pediatr Radiol 46:1187–1198

    Article  PubMed  Google Scholar 

  23. Lee JH, Zhang J, Wei L, Yu SP (2015) Neurodevelopmental implications of the general anesthesia in neonate and infants. Exp Neurol 272:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olsen EA, Brambrink AM (2013) Anesthetic neurotoxicity in the newborn and infant. Curr Opin Anaesthesiol 26:535–542

    Article  CAS  PubMed  Google Scholar 

  25. Dong S-Z, Zhu M, Bulas D (2019) Techniques for minimizing sedation in pediatric MRI. J Magn Reson Imaging 50:1047–1054

    Article  PubMed  Google Scholar 

  26. Ahmad R, Hu HH, Krishnamurthy R, Krishnamurthy R (2018) Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols. Pediatr Radiol 48:37–49

    Article  PubMed  Google Scholar 

  27. Fogel MA, Pawlowski TW, Harris MA et al (2011) Comparison and usefulness of cardiac magnetic resonance versus computed tomography in infants six months of age or younger with aortic arch anomalies without deep sedation or anesthesia. Am J Cardiol 108:120–125

    Article  PubMed  Google Scholar 

  28. Shariat M, Mertens L, Seed M et al (2015) Utility of feed-and-sleep cardiovascular magnetic resonance in young infants with complex cardiovascular disease. Pediatr Cardiol 36:809–812

    Article  PubMed  Google Scholar 

  29. Heller BJ, Yudkowitz FS, Lipson S (2017) Can we reduce anesthesia exposure? Neonatal brain MRI: swaddling vs. sedation, a national survey. J Clin Anesth 38:119–122

    Article  PubMed  Google Scholar 

  30. Antonov NK, Ruzal-Shapiro CB, Morel KD et al (2017) Feed and wrap MRI technique in infants. Clin Pediatr 56:1095–1103

    Article  Google Scholar 

  31. Christopher AB, Quinn RE, Zoulfagharian S et al (2020) Motion-corrected cardiac MRI is associated with decreased anesthesia exposure in children. Pediatr Radiol 50:1709–1716

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bireley M, Kovach JR, Morton C et al (2020) Cardiac magnetic resonance imaging (MRI) in children is safe with most pacemaker systems, including those with epicardial leads. Pediatr Cardiol 41:801–808

    Article  PubMed  Google Scholar 

  33. Schaller RD, Brunker T, Riley MP et al (2021) Magnetic resonance imaging in patients with cardiac implantable electronic devices with abandoned leads. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2020.7572

  34. Gakenheimer-Smith L, Etheridge SP, Niu MC et al (2020) MRI in pediatric and congenital heart disease patients with CIEDs and epicardial or abandoned leads. Pacing Clin Electrophysiol 43:797–804

    Article  PubMed  Google Scholar 

  35. Ait-Ali L, Andreassi MG, Foffa I et al (2010) Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart 96:269–274

    Article  PubMed  Google Scholar 

  36. Ou P, Celermajer DS, Calcagni G et al (2007) Three-dimensional CT scanning: a new diagnostic modality in congenital heart disease. Heart 93:908–913

    Article  PubMed  Google Scholar 

  37. Santelli C, Nezafat R, Goddu B et al (2011) Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR. Magn Reson Med 65:1097–1102

    Article  PubMed  Google Scholar 

  38. Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng JY, Hanneman K, Zhang T et al (2016) Comprehensive motion-compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease. J Magn Reson Imaging 43:1355–1368

    Article  PubMed  Google Scholar 

  40. Driessen MMP, Breur JMPJ, Budde RPJ et al (2015) Advances in cardiac magnetic resonance imaging of congenital heart disease. Pediatr Radiol 45:5–19

    Article  PubMed  Google Scholar 

  41. Latus H, Gummel K, Klingel K et al (2015) Focal myocardial fibrosis assessed by late gadolinium enhancement cardiovascular magnetic resonance in children and adolescents with dilated cardiomyopathy. J Cardiovasc Magn Reson 17:34

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang J, Fleischmann D (2018) Improving spatial resolution at CT: development, benefits, and pitfalls. Radiology 289:261–262

    Article  PubMed  Google Scholar 

  43. Lin E, Alessio A (2009) What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr 3:403–408

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mortensen KH, Tann O (2018) Computed tomography in paediatric heart disease. Br J Radiol 91:20180201

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mahesh M, Cody DD (2007) Physics of cardiac imaging with multiple-row detector CT. Radiographics 27:1495–1509

    Article  PubMed  Google Scholar 

  46. Sheth PJ, Danton GH, Siegel Y et al (2015) Cardiac physiology for radiologists: review of relevant physiology for interpretation of cardiac MR imaging and CT. Radiographics 35:1335–1351

    Article  PubMed  Google Scholar 

  47. Le Roy J, Vernhet Kovacsik H, Zarqane H et al (2019) Submillisievert multiphasic coronary computed tomography angiography for pediatric patients with congenital heart diseases. Circ Cardiovasc Imaging 12:e008348

    Article  PubMed  Google Scholar 

  48. Goo HW (2011) Cardiac MDCT in children: CT technology overview and interpretation. Radiol Clin N Am 49:997–1010

    Article  PubMed  Google Scholar 

  49. Yamaguchi T, Takahashi D (2009) Development of test bolus tracking method and usefulness in coronary CT angiography. Nippon Hoshasen Gijutsu Gakkai Zasshi 65:1032–1040

    Article  Google Scholar 

  50. Bae KT (2005) Test-bolus versus bolus-tracking techniques for CT angiographic timing. Radiology 236:369–370

    Article  PubMed  Google Scholar 

  51. Opfer E, Shah S (2018) Advances in pediatric cardiovascular imaging. Mo Med 115:354–360

    PubMed  PubMed Central  Google Scholar 

  52. Dhamanaskar KP, Figueira KSE, Jerome SC, Yemen BL (2013) Test bolus technique for detection of pulmonary emboli at 64-slice multidetector computed tomography angiography. Can Assoc Radiol J 64:226–228

    Article  PubMed  Google Scholar 

  53. Barrera CA, White AM, Shepherd AM et al (2019) Contrast extravasation using power injectors for contrast-enhanced computed tomography in children: frequency and injury severity. Acad Radiol 26:1668–1674

    Article  PubMed  Google Scholar 

  54. Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schindler P, Kehl H-G, Wildgruber M et al (2020) Cardiac CT in the preoperative diagnostics of neonates with congenital heart disease: radiation dose optimization by omitting test bolus or bolus tracking. Acad Radiol 27:e102–e108

    Article  PubMed  Google Scholar 

  56. Dodge-Khatami J, Adebo DA (2021) Evaluation of complex congenital heart disease in infants using low dose cardiac computed tomography. Int J Cardiovasc Imaging 37:1455–1460

    Article  PubMed  Google Scholar 

  57. Tricarico F, Hlavacek AM, Schoepf UJ et al (2013) Cardiovascular CT angiography in neonates and children: image quality and potential for radiation dose reduction with iterative image reconstruction techniques. Eur Radiol 23:1306–1315

    Article  PubMed  Google Scholar 

  58. Raimondi F, Warin-Fresse K (2016) Computed tomography imaging in children with congenital heart disease: indications and radiation dose optimization. Arch Cardiovasc Dis 109:150–157

    Article  PubMed  Google Scholar 

  59. Valente AM, Powell AJ (2007) Clinical applications of cardiovascular magnetic resonance in congenital heart disease. Magn Reson Imaging Clin N Am 15:565–577

    Article  PubMed  Google Scholar 

  60. Valsangiacomo Buechel ER, Fogel MA (2011) Congenital cardiac defects and MR-guided planning of surgery. Magn Reson Imaging Clin N Am 19:823–840

    Article  PubMed  Google Scholar 

  61. Shaaban M, Tantawy S, Elkafrawy F et al (2020) Multi-detector computed tomography in the assessment of tetralogy of Fallot patients: is it a must? Egypt Heart J 72:17

    Article  PubMed  PubMed Central  Google Scholar 

  62. Albrecht MH, Varga-Szemes A, Schoepf UJ et al (2019) Diagnostic accuracy of noncontrast self-navigated free-breathing MR angiography versus CT angiography: a prospective study in pediatric patients with suspected anomalous coronary arteries. Acad Radiol 26:1309–1317

    Article  PubMed  Google Scholar 

  63. Vliegenthart R, Pelgrim GJ, Ebersberger U et al (2012) Dual-energy CT of the heart. AJR Am J Roentgenol 199:S54–S63

    Article  PubMed  Google Scholar 

  64. Grosse-Wortmann L, Yun T-J, Al-Radi O et al (2008) Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging. J Thorac Cardiovasc Surg 136:1429–1436

    Article  PubMed  Google Scholar 

  65. Hull NC, Schooler GR, Binkovitz LA et al (2018) Chest computed tomography angiography in children on extracorporeal membrane oxygenation (ECMO). Pediatr Radiol 48:1021–1030

    Article  PubMed  Google Scholar 

  66. Goodwin SJ, Randle E, Iguchi A et al (2014) Chest computed tomography in children undergoing extra-corporeal membrane oxygenation: a 9-year single-centre experience. Pediatr Radiol 44:750–760

  67. Lidegran MK, Ringertz HG, Frenckner BP, Lindén VB (2005) Chest and abdominal CT during extracorporeal membrane oxygenation: clinical benefits in diagnosis and treatment. Acad Radiol 12:276–285

    Article  PubMed  Google Scholar 

  68. Chaturvedi RR, Macrae D, Brown KL et al (2004) Cardiac ECMO for biventricular hearts after paediatric open heart surgery. Heart 90:545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martí-Bonmatí L, Vega T, Benito C et al (2000) Safety and efficacy of Omniscan (gadodiamide injection) at 0.1 mmol/kg for MRI in infants younger than 6 months of age: phase III open multicenter study. Investig Radiol 35:141–147

    Article  Google Scholar 

  70. Emond S, Brunelle F (2011) Gd-DOTA administration at MRI in children younger than 18 months of age: immediate adverse reactions. Pediatr Radiol 41:1401–1406

    Article  PubMed  Google Scholar 

  71. Schneider G, Schürholz H, Kirchin MA et al (2013) Safety and adverse effects during 24 hours after contrast-enhanced MRI with gadobenate dimeglumine (MultiHance) in children. Pediatr Radiol 43:202–211

    Article  PubMed  Google Scholar 

  72. ACR Committee on Drugs and Contrast Media (2021) ACR manual on drugs and contrast media. American College of Radiology. https://www.acr.org/-/media/ACR/files/clinical-resources/contrast_media.pdf. Accessed 11 Aug 2021

  73. Weinreb JC, Rodby RA, Yee J et al (2021) Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology 298:28–35

    Article  PubMed  Google Scholar 

  74. Drukker A, Guignard J-P (2002) Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr 14:175–182

    Article  PubMed  Google Scholar 

  75. Bedoya MA, White AM, Edgar JC et al (2017) Effect of intravenous administration of contrast media on serum creatinine levels in neonates. Radiology 284:530–540

    Article  PubMed  Google Scholar 

  76. Toth GB, Varallyay CG, Horvath A et al (2017) Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 92:47–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nguyen K-L, Han F, Zhou Z et al (2017) 4D MUSIC CMR: value-based imaging of neonates and infants with congenital heart disease. J Cardiovasc Magn Reson 19:40

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ahmad F, Treanor L, McGrath TA et al (2020) Safety of off-label use of ferumoxtyol as a contrast agent for MRI: a systematic review and meta-analysis of adverse events. J Magn Reson Imaging 53:840–858

    Article  PubMed  Google Scholar 

  79. United States Food and Drug Administration (2015) FDA drug safety communication: FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol). https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-strengthens-warnings-and-changes-prescribing-instructions-decrease. Accessed 11 Aug 2021

  80. Finn JP, Nguyen KL, Han F et al (2016) Cardiovascular MRI with ferumoxytol. Clin Radiol 71:796–806

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Society for Pediatric Radiology cardiac CT angiography grant program along with Lorna Browne, MD, Prakash Masand, MD, and Cynthia Rigsby, MD, for their mentorship in further developing our cardiac CT angiography program. We would also like to acknowledge David Saul, MD, for his important contributions to our cardiac imaging group. We would like to thank Lydia Sheldon, MSEd, medical writer at Children’s Hospital of Philadelphia, Department of Radiology, for reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen I. Ramirez-Suarez.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez-Suarez, K.I., Tierradentro-García, L.O., Otero, H.J. et al. Optimizing neonatal cardiac imaging (magnetic resonance/computed tomography). Pediatr Radiol 52, 661–675 (2022). https://doi.org/10.1007/s00247-021-05201-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05201-w

Keywords

Navigation