Skip to main content

Advertisement

Log in

Value of pre- and postnatal magnetic resonance imaging in the evaluation of congenital central nervous system anomalies

  • Neonatal imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Fetal MRI and neonatal MRI of the central nervous system (CNS) are complementary tools that can help to accurately counsel and direct the management of children with anomalies of the central nervous system. Postnatal MRI can add to fetal MRI by allowing for monitoring of changes in the severity of disease, better delineation of a suspected prenatal anomaly, evaluation for secondary pathologies related to the primary diagnosis, and surgical management direction. In this review we discuss the roles of fetal and neonatal MRI in the diagnosis and treatment of congenital anomalies of the CNS through a series of case examples and how both are important in patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Filly RA, Cardoza JD, Goldstein RB, Barkovich AJ (1989) Detection of fetal central nervous system anomalies: a practical level of effort for a routine sonogram. Radiology 172:403–408

    Article  CAS  PubMed  Google Scholar 

  2. Pellerito J, Bromley B, Allsion S et al (2018) AIUM-ACR-ACOG-SMFM-SRU practice parameter for the performance of standard diagnostic obstetric ultrasound examinations. J Ultrasound Med 37:E13–E24

    Article  Google Scholar 

  3. Buscarini E, Lutz H, Mirk P (2013) Manual of diagnostic ultrasound, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  4. Levine D, Barnes PD, Robertson RR et al (2003) Fast MR imaging of fetal central nervous system abnormalities. Radiology 229:51–61

    Article  PubMed  Google Scholar 

  5. Griffiths PD, Bradburn M, Campbell M et al (2017) Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet 389:538–546

    Article  PubMed  Google Scholar 

  6. American College of Radiology (2020) ACR–SPR practice parameter for the safe and optimal performance of fetal magnetic resonance imaging (MRI). ACR, Reston

    Google Scholar 

  7. Herrera CL, Byrne JJ, Clark HR et al (2020) Use of fetal magnetic resonance imaging after sonographic identification of major structural anomalies. J Ultrasound Med 39:2053–2058

    Article  PubMed  Google Scholar 

  8. Tocchio S, Kline-Fath B, Kanal E et al (2015) MRI evaluation and safety in the developing brain. Semin Perinatol 39:73–104

    Article  PubMed  PubMed Central  Google Scholar 

  9. Neelavalli J, Kumar P, Krishnamurthy U et al (2014) Measuring venous blood oxygenation in fetal brain using susceptibility weighted imaging. J Magn Reson Imaging 39:998–1006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ray JG, Vermeulen MJ, Bharatha A et al (2016) Association between MRI exposure during pregnancy and fetal and childhood outcomes. J Am Med Assoc 316:952–961

    Article  Google Scholar 

  11. Ber R, Hoffman D, Hoffman C et al (2017) Volume of structures in the fetal brain measured with a new semiautomated method. AJNR Am J Neuroradiol 38:2193–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McAllister A, Leach J, West H et al (2017) Quantitative synthetic MRI in children: normative intracranial tissue segmentation values during development. AJNR Am J Neuroradiol 38:2364–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heller BJ, Yudkowitz FS, Lipson S (2017) Can we reduce anesthesia exposure? Neonatal brain MRI: swaddling vs. sedation, a national survey. J Clin Anesth 38:119–122

    Article  PubMed  Google Scholar 

  14. Goldstein RB, La Pidus AS, Filly RA, Cardoza J (1990) Mild lateral cerebral ventricular dilatation in utero: clinical significance and prognosis. Radiology 176:237–242

    Article  CAS  PubMed  Google Scholar 

  15. Achiron R, Schimmel M, Achiron A, Mashiach S (1993) Fetal mild idiopathic lateral ventriculomegaly: is there a correlation with fetal trisomy? Ultrasound Obstet Gynecol 3:89–92

    Article  CAS  PubMed  Google Scholar 

  16. Salomon LJ, Bernard JP, Ville Y (2007) Reference ranges for fetal ventricular width: a non-normal approach. Ultrasound Obstet Gynecol 30:61–66

    Article  CAS  PubMed  Google Scholar 

  17. Gibbs WN, Tanenbaum LN (2018) Imaging of hydrocephalus. Appl Radiol 47:5–13

    Google Scholar 

  18. Nagaraj UD, Kline-Fath BM (2020) Imaging diagnosis of ventriculomegaly: fetal, neonatal, and pediatric. Childs Nerv Syst 36:1669–1679

    Article  PubMed  Google Scholar 

  19. Levine D, Trop I, Mehta TS, Barnes PD (2002) MR imaging appearance of fetal cerebral ventricular morphology. Radiology 223:652–660

    Article  PubMed  Google Scholar 

  20. Garel C, Alberti C (2006) Coronal measurement of the fetal lateral ventricles: comparison between ultrasonography and magnetic resonance imaging. Ultrasound Obstet Gynecol 27:23–27

    Article  CAS  PubMed  Google Scholar 

  21. Gaglioti P, Oberto M, Todros T (2009) The significance of fetal ventriculomegaly: etiology, short- and long-term outcomes. Prenat Diagn 29:381–388

    Article  PubMed  Google Scholar 

  22. Falip C, Blanc N, Maes E et al (2007) Postnatal clinical and imaging follow-up of infants with prenatal isolated mild ventriculomegaly: a series of 101 cases. Pediatr Radiol 37:981–989

    Article  PubMed  Google Scholar 

  23. Gaglioti P, Danelon D, Bontempo S et al (2005) Fetal cerebral ventriculomegaly: outcome in 176 cases. Ultrasound Obstet Gynecol 25:372–377

    Article  CAS  PubMed  Google Scholar 

  24. Hannon T, Tennant PWG, Rankin J, Robson SC (2012) Epidemiology, natural history, progression, and postnatal outcome of severe fetal ventriculomegaly. Obstet Gynecol 120:1345–1353

    Article  PubMed  Google Scholar 

  25. Nyberg A, Mack A, Hirsch J, Shepard H (1987) Fetal hydrocephalus: sonographic detection and clinical significance of associated anomalies. Radiology 163:187–191

    Article  CAS  PubMed  Google Scholar 

  26. Weichert J, Hartge D, Krapp M et al (2010) Prevalence, characteristics and perinatal outcome of fetal ventriculomegaly in 29,000 pregnancies followed at a single institution. Fetal Diagn Ther 27:142–148

    Article  PubMed  Google Scholar 

  27. Glenn OA, Cuneo AA, Barkovich AJ et al (2012) Malformations of cortical development: diagnostic accuracy of fetal MR imaging. Radiology 263:843–855

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yamasaki M, Nonaka M, Bamba Y et al (2012) Seminars in fetal & neonatal medicine diagnosis, treatment, and long-term outcomes of fetal hydrocephalus. Semin Fetal Neonatal Med 17:330–335

    Article  PubMed  Google Scholar 

  29. Garel C, Luton D, Oury JF, Gressens P (2003) Ventricular dilatations. Childs Nerv Syst 19:517–523

    Article  PubMed  Google Scholar 

  30. D'Addario V, Pinto V, Di Cagno L, Pintucci A (2007) Sonographic diagnosis of fetal cerebral ventriculomegaly: an update. J Matern Neonatal Med 20:7–14

    Article  Google Scholar 

  31. Cinalli G, Spennato P, Nastro A et al (2011) Hydrocephalus in aqueductal stenosis. Childs Nerv Syst 27:1621–1642

    Article  PubMed  Google Scholar 

  32. Zhang J, Williams MA, Rigamonti D (2006) Genetics of human hydrocephalus. J Neurol 253:1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jissendi-Tchofo P, Kara S, Barkovich AJ (2009) Midbrain-hindbrain involvement in lissencephalies. Neurology 72:410–418

    Article  PubMed  PubMed Central  Google Scholar 

  34. Levitsky DB, Mack LA, Nyber DA et al (1995) Fetal aqueductal stenosis diagnosed sonographically: how grave is the prognosis? AJR Am J Roentgenol 164:725–730

    Article  CAS  PubMed  Google Scholar 

  35. Heaphy-Henault K, Guimaraes C, Mehollin-Ray AR et al (2018) Congenital aqueductal stenosis: findings at fetal MRI that accurately predict a postnatal diagnosis. AJNR Am J Neuroradiol 39:942–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kline-Fath BM, Arroyo MS, Calvo-Garcia MA et al (2018) Prenatal aqueduct stenosis: association with rhombencephalosynapsis and neonatal outcome. Prenat Diagn 38:1028–1034

    Article  PubMed  Google Scholar 

  37. Kline-Fath BM, Arroyo MS, Calvo-Garcia MA et al (2018) Congenital aqueduct stenosis: progressive brain findings in utero to birth in the presence of severe hydrocephalus. Prenat Diagn 38:706–712

    Article  PubMed  Google Scholar 

  38. Chen CP (2007) Prenatal diagnosis of arachnoid cysts. Taiwan J Obstet Gynecol 46:187–198

    Article  PubMed  Google Scholar 

  39. Kline-Fath BM, Bulas DI, Lee W (2019) Fundamental and advanced fetal imaging, 2nd edn. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  40. Pilu G, Falco P, Perolo A et al (1997) Differential diagnosis and outcome of fetal intracranial hypoechoic lesions: report of 21 cases. Ultrasound Obstet Gynecol 9:229–236

    Article  CAS  PubMed  Google Scholar 

  41. Youssef A, D'Antonio F, Khalil A et al (2016) Outcome of fetuses with supratentorial extra-axial intracranial cysts: a systematic review. Fetal Diagn Ther 40:1–12

    Article  PubMed  Google Scholar 

  42. Barjot P, von Theobald P, Refahi N et al (1999) Diagnosis of arachnoid cysts of prenatal ultrasound. Fetal Diagn Ther 14:306–309

    Article  CAS  PubMed  Google Scholar 

  43. Pierre-Kahn A, Sonigo P (2003) Malformative intracranial cysts: diagnosis and outcome. Childs Nerv Syst 19:477–483

    Article  PubMed  Google Scholar 

  44. Hayward R (2009) Postnatal management and outcome for fetal-diagnosed intra-cerebral cystic masses and tumours. Prenat Diagn 29:396–401

    Article  PubMed  Google Scholar 

  45. Yin L, Yang Z, Pan Q et al (2018) Sonographic diagnosis and prognosis of fetal arachnoid cysts. J Clin Ultrasound 46:96–102

    Article  PubMed  Google Scholar 

  46. Conte G, Parazzini C, Falanga G et al (2016) Diagnostic value of prenatal MR imaging in the detection of brain malformations in fetuses before the 26th week of gestational age. AJNR Am J Neuroradiol 37:946–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Razek A, Kandell AY, Elsorogy LG et al (2009) Disorders of cortical formation: MR imaging features. AJNR Am J Neuroradiol 30:4–11

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barkovich AJ, Guerrini R, Kuzniecky RI et al (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135:1348–1369

    Article  PubMed  PubMed Central  Google Scholar 

  49. Williams E, Griffiths PD (2017) In utero MR imaging in fetuses at high risk of lissencephaly. Br J Radiol 90:20160902

    Article  PubMed  PubMed Central  Google Scholar 

  50. Barkovich AJ, Raybaud C (2012) Pediatric neuroimaging, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  51. Glenn OA, Barkovich AJ (2006) Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: part 1. AJNR Am J Neuroradiol 27:1604–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagaraj UD, Peiro JL, Bierbrauer KS, Kline-Fath BM (2016) Evaluation of subependymal gray matter heterotopias on fetal MRI. AJNR Am J Neuroradiol 37:720–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Domínguez-Pinos MD, Paez P, Jimenez AJ et al (2005) Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604

    Article  PubMed  Google Scholar 

  54. Winter TC, Kennedy AM, Woodward PJ (2015) Holoprosencephaly: a survey of the entity, with embryology and fetal imaging. Radiographics 35:275–290

    Article  PubMed  Google Scholar 

  55. DeMyer W, Zeman W, Palmer C (1964) The face predicts the brain: diagnostic significance of median facial anomalies for holoprosencephaly (arhinencephaly). Pediatrics 34:256–263

    Article  CAS  PubMed  Google Scholar 

  56. Kousa YA, du Plessis AJ, Vezina G (2018) Prenatal diagnosis of holoprosencephaly. Am J Med Genet Part C Semin Med Genet 178:206–213

    Article  PubMed  Google Scholar 

  57. Riddle A, Nagaraj U, Hopkin RJ et al (2021) Fetal magnetic resonance imaging (MRI) in holoprosencephaly and associations with clinical outcome: implications for fetal counseling. J Child Neurol 36:357–364

    Article  PubMed  Google Scholar 

  58. Hahn JS, Barnes PD, Clegg NJ, Stashinko EE (2010) Septopreoptic holoprosencephaly: a mild subtype associated with midline craniofacial anomalies. AJNR Am J Neuroradiol 31:1596–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bethune M, Alibrahim E, Davies B, Yong E (2013) A pictorial guide for the second trimester ultrasound. Australas J Ultrasound Med 16:98–113

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nagaraj UD, Calvo-Garcia MA, Kline-Fath BM (2018) Abnormalities associated with the cavum septi pellucidi on fetal MRI: what radiologists need to know. AJR Am J Roentgenol 210:989–997

    Article  PubMed  Google Scholar 

  61. Ryabets-Lienhard A, Stewart C, Borchert M, Geffner ME (2016) The optic nerve hypoplasia spectrum: review of the literature and clinical guidelines. Adv Pediatr Infect Dis 63:127–146

    Google Scholar 

  62. García-Arreza A, García-Díaz L, Fajardo M et al (2013) Isolated absence of septum pellucidum: prenatal diagnosis and outcome. Fetal Diagn Ther 33:130–132

    Article  PubMed  Google Scholar 

  63. Vawter-Lee MM, Wasserman H, Thomas CW et al (2018) Outcome of isolated absent septum pellucidum diagnosed by fetal magnetic resonance imaging (MRI) scan. J Child Neurol 33:693–699

    Article  PubMed  Google Scholar 

  64. Tortori-Donati P, Rossi A, Cama A (2000) Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology 42:471–491

    Article  CAS  PubMed  Google Scholar 

  65. Nagaraj UD, Bierbrauer KS, Peiro JL, Kline-Fath BM (2016) Differentiating closed versus open spinal dysraphisms on fetal MRI. AJR Am J Roentgenol 207:1316–1323

    Article  PubMed  Google Scholar 

  66. Berger-Kulemann V, Brugger PC, Reisegger M et al (2011) Quantification of the subcutaneous fat layer with MRI in fetuses of healthy mothers with no underlying metabolic disease vs. fetuses of diabetic and obese mothers. J Perinat Med 40:179–184

    PubMed  Google Scholar 

  67. Muthukumar N (2007) Terminal and nonterminal myelocystoceles. J Neurosurg Pediatr 107:87–97

    Article  Google Scholar 

  68. Hung BH, Chiang CL, Wang PC, Lai PH (2011) Teaching neuroimages: terminal myelocystocele. Neurology 76:75–76

    Article  Google Scholar 

  69. Byrd SE, Harvey C, Darling CF (1995) R of terminal myelocystoceles. Eur J Radiol 20:215–220

    Article  CAS  PubMed  Google Scholar 

  70. Tandon V, Garg K, Mahapatra AK (2013) Terminal myelocystocele: a series of 30 cases and review of the literature. Pediatr Neurosurg 48:229–235

    Article  Google Scholar 

  71. Choi SH, McComb JG (2000) Long-term outcome of terminal myelocystocele patients. Pediatr Neurosurg 32:86–91

    Article  CAS  PubMed  Google Scholar 

  72. Stevenson KL (2004) Chiari type II malformation: past, present, and future. Neurosurg Focus 16:1–7

    Article  Google Scholar 

  73. Sutton LN, Adzick NS, Bilaniuk LT et al (1999) Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA 282:1826–1831

    Article  CAS  PubMed  Google Scholar 

  74. Nagaraj UD, Bierbrauer KS, Zhang B (2017) Hindbrain herniation in Chiari II malformation on fetal and postnatal MRI. AJNR Am J Neuroradiol 38:1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tulipan N, Wellons JC, Thom EA et al (2015) Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J Neurosurg Pediatr 16:613–620

    Article  PubMed  PubMed Central  Google Scholar 

  77. Farmer DL, Thom EA, Brock JW et al (2017) The Management of Myelomeningocele Study: full cohort 30 month pediatric outcomes. Am J Obstet Gynecol 218:256.e1–256.e13

    Article  Google Scholar 

  78. Levine DN (2004) The pathogenesis of syringomyelia associated with lesions at the foramen magnum: a critical review of existing theories and proposal of a new hypothesis. J Neurol Sci 220:3–21

    Article  PubMed  Google Scholar 

  79. Bixenmann B, Kline-Fath BM, Bierbrauer KS, Bansal D (2014) Prenatal and postnatal evaluation for syringomyelia in patients with spinal dysraphism. J Neurosurg Pediatr 14:316–321

    Article  PubMed  Google Scholar 

  80. Nagaraj UD, Bierbrauer KS, Stevenson CB et al (2018) Spinal imaging findings of open spinal dysraphisms on fetal and postnatal MRI. AJNR Am J Neuroradiol 39:1947–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Beaumont A, Muszynski CA, Kaufman BA (2007) Clinical significance of terminal syringomyelia in association with pediatric tethered cord syndrome. Pediatr Neurosurg 43:216–221

    Article  PubMed  Google Scholar 

  82. Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group (2013) Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol 49:243–254

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hulshof H, Slot EMH, Lequin M et al (2021) Fetal brain MRI findings predict neurodevelopment in children with tuberous sclerosis complex. J Pediatr. https://doi.org/10.1016/j.jpeds.2021.02.060

  84. Zhou Y, Dong SZ, Zhong YM, Sun AM (2018) Prenatal and postnatal diagnosis of rhabdomyomas and tuberous sclerosis complex by ultrafast and standard MRI. Indian J Pediatr 85:729–737

    Article  PubMed  Google Scholar 

  85. Mao S, Long Q, Lin H, Liu J (2017) Rapamycin therapy for neonatal tuberous sclerosis complex with cardiac rhabdomyomas: a case report and review. Exp Ther Med 14:6159–6163

    PubMed  PubMed Central  Google Scholar 

  86. Jones BV, Ball WS, Tomsick TA et al (2002) Vein of Galen aneurysmal malformation: diagnosis and treatment of 13 children with extended clinical follow-up. AJNR Am J Neuroradiol 23:1717–1724

    PubMed  PubMed Central  Google Scholar 

  87. Hassan T, Nassar M, Elghandour M (2011) Vein of Galen aneurysms: presentation and endovascular management. Pediatr Neurosurg 46:427–434

    Article  Google Scholar 

  88. Wagner M, Vaught A, Poretti A et al (2015) Vein of Galen aneurysmal malformation: prognostic markers depicted on fetal MRI. Neuroradiol J 28:72–75

    Article  PubMed  PubMed Central  Google Scholar 

  89. Li TG, Zhang Y, Nie F et al (2020) Diagnosis of foetal vein of Galen aneurysmal malformation by ultrasound combined with magnetic resonance imaging: a case series. BMC Med Imaging 20:1–6

    Article  CAS  Google Scholar 

  90. Arko L, Lambrych M, Montaser A et al (2020) Fetal and neonatal MRI predictors of aggressive early clinical course in vein of Galen malformation. AJNR Am J Neuroradiol 41:115–1111

    Article  Google Scholar 

  91. Bhatia K, Pereira VM, Krings T et al (2020) Factors contributing to major neurological complications from vein of Galen malformation embolization. JAMA Neurol 77:992–999

    Article  PubMed  Google Scholar 

  92. Aaronson OS, Hernanz-Schulman M, Bruner JP et al (2003) Myelomeningocele: prenatal evaluation — comparison between transabdominal US and MR imaging. Radiology 227:839–843

    Article  PubMed  Google Scholar 

  93. Nagaraj UD, Bierbrauer KS, Stevenson CB et al (2020) Prenatal and postnatal MRI findings in open spinal dysraphism following intrauterine repair via open versus fetoscopic surgical techniques. Prenat Diagn 40:49–57

    Article  PubMed  Google Scholar 

  94. Nagaraj UD, Kline-Fath BM (2020) Imaging of open spinal dysraphisms in the era of prenatal surgery. Pediatr Radiol 50:1988–1998

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha D. Nagaraj.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, U.D., Venkatesan, C., Bierbrauer, K.S. et al. Value of pre- and postnatal magnetic resonance imaging in the evaluation of congenital central nervous system anomalies. Pediatr Radiol 52, 802–816 (2022). https://doi.org/10.1007/s00247-021-05137-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05137-1

Keywords

Navigation