Skip to main content
Log in

Reduced Forced Vital Capacity and the Number of Chest Wall Surgeries are Associated with Decreased Exercise Capacity in Children with Congenital Heart Disease

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Low forced vital capacity (FVC) is associated with decreased exercise capacity in CHD. Multiple prior cardiac surgeries have been associated with low FVC. We seek to understand the relationship between low FVC, number of cardiac surgeries and cardiopulmonary response leading to decreased exercise capacity. Retrospective chart review of demographics, surgical history and exercise testing including spirometry was performed in patients with CHD. Single ventricle patients were excluded. Low FVC was defined as a Z-score below the lower limit of normal. Exercise parameters were expressed as a percent of predicted. There were 93 patients with 2 ventricle CHD identified over 34 months with cardiopulmonary exercise testing. The FVC Z-score directly correlated with peak V̇O2% (R2 = 0.07, p < 0.05), and the O2 pulse% (R2 = 0.25, p < 0.0001). The VE/VCO2 was inversely related to the FVC Z-score (R2 = 0.11, p < 0.01). Patients with minimum three prior surgeries had decreased peak VO2% (63.7 vs. 72.8, p < 0.05), decreased peak O2 pulse% (80.8 vs. 97.9, p < 0.01) and a lower mean FVC Z-score (− 1.9 vs − 0.38, p < 0.01). The FVC Z-score and number of surgeries both predicted peak V̇O2% in multivariate analysis. Our study demonstrated that low FVC and three or more prior cardiac surgeries were associated with lower exercise capacity and lower stroke volume response. More cardiac surgeries were also associated with low FVC. However, both low FVC and the number of surgeries were independent predictors of exercise capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Available upon request.

Code Availability

Available upon request.

References

  1. Atz AM, Zak V, Mahony L, Uzark K, D’agincourt N, Goldberg DJ, Williams RV, Breitbart RE, Colan SD, Burns KM, Margossian R, Henderson HT, Korsin R, Marino BS, Daniels K, McCrindle BW (2017) Longitudinal Outcomes of patients with single ventricle after the fontan procedure. J Am Coll Cardiol 69(22):2735–2744. https://doi.org/10.1016/j.jacc.2017.03.582

    Article  PubMed  PubMed Central  Google Scholar 

  2. Diller GP, Giardini A, Dimopoulos K, Gargiulo G, Müller J, Derrick G, Giannakoulas G, Khambadkone S, Lammers AE, Picchio FM, Gatzoulis MA, Hager A (2010) Predictors of morbidity and mortality in contemporary Fontan patients: results from a multicenter study including cardiopulmonary exercise testing in 321 patients. Eur Heart J 31(24):3073–3083. https://doi.org/10.1093/eurheartj/ehq356

    Article  PubMed  Google Scholar 

  3. Chen CK, Manlhiot C, Russell JL, Kantor PF, McCrindle BW, Conway J (2017) The utility of cardiopulmonary exercise testing for the prediction of outcomes in ambulatory children with dilated cardiomyopathy. Transplantation 101(10):2455–2460. https://doi.org/10.1097/TP.0000000000001672

    Article  PubMed  Google Scholar 

  4. Cohen KE, Buelow MW, Dixon J, Brazauskas R, Cohen SB, Earing MG, Ginde S (2017) Forced vital capacity predicts morbidity and mortality in adults with repaired tetralogy of Fallot. Congenit Heart Dis 12(4):435–440. https://doi.org/10.1111/chd.12470

    Article  PubMed  Google Scholar 

  5. Giardini A, Specchia S, Tacy TA, Coutsoumbas G, Gargiulo G, Donti A, Formigari R, Bonvicini M, Picchio FM (2007) Usefulness of cardiopulmonary exercise to predict long-term prognosis in adults with repaired tetralogy of Fallot. Am J Cardiol 99(10):1462–1467. https://doi.org/10.1016/j.amjcard.2006.12.076

    Article  PubMed  Google Scholar 

  6. Schaan CW, de Macedo ACP, Sbruzzi G, Umpierre D, Schaan BD, Pellanda LC (2017) Functional capacity in congenital heart disease: a systematic review and meta-analysis. Arq Bras Cardiol 109(4):357–367. https://doi.org/10.5935/abc.20170125

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mocellin R, Gildein P (1999) Velocity of oxygen uptake response at the onset of exercise: a comparison between children after cardiac surgery and healthy boys. Pediatric Cardiol 20:17–20. https://doi.org/10.1007/s002469900385

    Article  CAS  Google Scholar 

  8. Ginde S, Bartz PJ, Hill GD, Danduran MJ, Biller J, Sowinski J, Tweddell JS, Earing MG (2012) Restrictive lung disease is an independent predictor of exercise intolerance in the adult with congenital heart disease. Congenit Heart Dis 8(3):246–254. https://doi.org/10.1111/chd.12010

    Article  PubMed  PubMed Central  Google Scholar 

  9. Callegari A, Neidenbach R, Milanesi O, Castaldi B, Christmann M, Ono M, Müller J, Ewert P, Hager A (2019) A restrictive ventilatory pattern is common in patients with univentricular heart after Fontan palliation and associated with a reduced exercise capacity and quality of life. Congenit Heart Dis. https://doi.org/10.1111/chd.12694

    Article  PubMed  Google Scholar 

  10. Opotowsky AR, Landzberg MJ, Earing MG, Wu FM, Triedman JK, Casey A, Ericson DA, Systrom D, Paridon SM, Rhodes J (2014) Abnormal spirometry after the Fontan procedure is common and associated with impaired aerobic capacity. Am J Physiol 307(1):H110–H117. https://doi.org/10.1152/ajpheart.00184.2014

    Article  CAS  Google Scholar 

  11. Turquetto ALR, Canêo LF, Agostinho DR, Oliveira PA, Lopes MIC, Trevizan PF, Fernandes FL, Binotto MA, Liberato G, Tavares GM, Neirotti RA, Jatene MB (2017) Impaired pulmonary function is an additional potential mechanism for the reduction of functional capacity in clinically stable Fontan patients. Pediatr Cardiol 38(5):981–990. https://doi.org/10.1007/s00246-017-1606-9

    Article  PubMed  Google Scholar 

  12. Abassi H, Gavotto A, Picot MC, Bertet H, Matecki S, Guillaumont S, Moniotte S, Auquier P, Moreau J, Amedro P (2019) Impaired pulmonary function and its association with clinical outcomes, exercise capacity and quality of life in children with congenital heart disease. Int J Cardiol 285:86–92. https://doi.org/10.1016/j.ijcard.2019.02.069

    Article  PubMed  Google Scholar 

  13. Morales Mestre N, Reychler G, Goubau C, Moniotte S (2019) Correlation between cardiopulmonary exercise test, spirometry, and congenital heart disease severity in pediatric population. Pediatr Cardiol 40(4):871–877. https://doi.org/10.1007/s00246-019-02084-5

    Article  PubMed  Google Scholar 

  14. Hawkins SM, Taylor AL, Sillau SH, Mitchell MB, Rausch CM (2014) Restrictive lung function in pediatric patients with structural congenital heart disease. J Thorac Cardiovasc Surg 148(1):207–11. https://doi.org/10.1016/j.jtcvs.2013.07.080

    Article  PubMed  Google Scholar 

  15. Müller J, Ewert P, Hager A (2018) Number of thoracotomies predicts impairment in lung function and exercise capacity in patients with congenital heart disease. J Cardiol 71(1):88–92. https://doi.org/10.1016/j.jjcc.2017.05.005

    Article  PubMed  Google Scholar 

  16. Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, Kimball TR, Knilans TK, Nixon PA, Rhodes J, Yetman AT (2006) Clinical stress testing in the pediatric age group: a statement from the American Heart Association council on cardiovascular disease in the young, committee on atherosclerosis, hypertension, and obesity in youth. Circulation 113(15):1905–1920. https://doi.org/10.1161/CIRCULATIONAHA.106.174375

    Article  PubMed  Google Scholar 

  17. Culver BH, Graham BL, Coates AL, Wanger J, Berry CE, Clarke PK, Hallstrand TS, Hankinson JL, Kaminsky DA, MacIntyre NR, McCormack MC, Rosenfeld M, Stanojevic S, Weiner EJ (2017) Recommendations for a standardized pulmonary function report. An official American Thoracic Society technical statement. Am J Respir Crit Care Med 196(11):1463–1472. https://doi.org/10.1164/rccm.201710-1981ST

    Article  PubMed  Google Scholar 

  18. Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Xing-Guo S, Whipp BJ (2012) Principles of exercise testing and interpretation: including pathophysiology and clinical applications, 5th edn. Philadelphia, Lippincott Williams & Wilkins, a Wolters Kluwer business

    Google Scholar 

  19. Brubaker PH, Kitzman DW (2011) Chronotropic incompetence; causes, consequences, and management. Circulation 123(9):1010–1020. https://doi.org/10.1161/CIRCULATIONAHA.110.940577

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tanaka H (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37(1):153–6. https://doi.org/10.1016/s0735-1097(00)01054-8

    Article  CAS  PubMed  Google Scholar 

  21. Buys R, Cornelissen V, Van De Bruaene A, Stevens A, Coeckelberghs E (2010) Measures of exercise capacity in adults with congenital heart disease. Int J Cardiol 153(1):26–30. https://doi.org/10.1016/j.ijcard.2010.08.030

    Article  PubMed  Google Scholar 

  22. Mestre NM, Reychler G, Goubau C, Moniotte S (2019) Correlation between cardiopulmonary exercise test, spirometry, and congenital heart disease severity in pediatric population. Pediatr Cardiol. https://doi.org/10.1007/s00246-019-02084-5

    Article  Google Scholar 

  23. Herdy AH, Ritt LEF, Stein R, de Araújo CGS, Milani M, Meneghelo RS, Ferraz AS, Hossri C, de Almeida AEM, da Silva MMF, Serra SM (2016) Cardiopulmonary exercise test: background, applicability and interpretation. Arq Bras Cardiol 107(5):467–481. https://doi.org/10.5935/abc.20160171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takken T, Bongers BC, Van Brussel M, Haapala EA, Hulzebos EH (2017) Cardiopulmonary exercise testing in pediatrics. Ann Am Thorac Soc. https://doi.org/10.1513/AnnalsATS.201611-912FR

    Article  PubMed  Google Scholar 

  25. Park CB, Suri RM, Burkhart HM, Greason KL, Dearani JA, Schaff HV et al (2010) Identifying patients at particular risk of injury during repeat sternotomy: analysis of 255 cardiac reoperations. J Thorac Cardiovasc Surg 140(5):1028–35. https://doi.org/10.1016/j.jtcvs.2010.07.086

    Article  PubMed  Google Scholar 

  26. Alonso-Gonzalez R, Borgia F, Diller GP, Inuzuka R, Kempny A, Martinez-Naharoo A, Tutarel O, Marino P, Wustmann K, Charalambides M, Silva M, Swan L, Dimopoulos K, Gatzoulis MA (2013) Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation 127(8):882–890. https://doi.org/10.1161/CIRCULATIONAHA.112.126755

    Article  PubMed  Google Scholar 

  27. Rungatscher A, Linardi D, Milani E, Ucci G, Nicolato E, Merigo F, Salvetti B, Mazzucco A, Luciani GB, Faggian G (2014) Chronic overcirculation-induced pulmonary arterial hypertension in aorto-caval shunt. Microvasc Res 94:73–79. https://doi.org/10.1016/j.mvr.2014.05.005

    Article  PubMed  Google Scholar 

  28. Rabinovitch M (1999) Pulmonary hypertension: pathophysiology as a basis for clinical decision making. J Heart Lung Transplant 18(11):1041–1053. https://doi.org/10.1016/s1053-2498(99)00015-7

    Article  CAS  PubMed  Google Scholar 

  29. Opotowsky AR (2015) Clinical evaluation and management of pulmonary hypertension in the adult with congenital heart disease. Circulation 131:200–210. https://doi.org/10.1161/CIRCULATIONAHA.114.006976

    Article  PubMed  Google Scholar 

  30. Johnson BD, Beck KC, Olson LJ, O’Malley KA, Allison TG, Squires RW, Gau GT (2001) Pulmonary function in patients with reduced left ventricular function: influence of smoking and cardiac surgery. Chest 120(6):1869–1876. https://doi.org/10.1378/chest.120.6.1869

    Article  CAS  PubMed  Google Scholar 

  31. Ragnarsdóttir M, KristjAnsdottir A, Ingvarsdottir I, Hannesson P, Torfason B, Cahalin L (2004) Short-term changes in pulmonary function and respiratory movements after cardiac surgery via median sternotomy. Scand Cardiovasc J 38(1):46–52. https://doi.org/10.1080/14017430310016658

    Article  PubMed  Google Scholar 

  32. O’Meagher S, Munoz PA, Alison JA, Young IH, Tanous DJ, Celermajer DS, Puranik R (2012) Exercise capacity and stroke volume are preserved late after tetralogy repair, despite severe right ventricular dilatation. Heart 98(21):1595–1599. https://doi.org/10.1136/heartjnl-2012-302147

    Article  PubMed  Google Scholar 

Download references

Funding

No funding source was utilized for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran R. Masood.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical Approval

Achieved through the Institutional Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, I.R., Detterich, J., Cerrone, D. et al. Reduced Forced Vital Capacity and the Number of Chest Wall Surgeries are Associated with Decreased Exercise Capacity in Children with Congenital Heart Disease. Pediatr Cardiol 43, 54–61 (2022). https://doi.org/10.1007/s00246-021-02692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-021-02692-0

Keywords

Navigation