Skip to main content
Log in

Numerical Shape Optimization Among Convex Sets

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This article proposes a new discrete framework for approximating solutions to two dimensional shape optimization problems under convexity constraints. The numerical method, based on the support function or the gauge function, is guaranteed to generate discrete convex shapes and is easily implementable using standard optimization software. The framework can handle various objective functions ranging from geometric quantities to functionals depending on partial differential equations. Width or diameter constraints are handled using the support function. Functionals depending on a convex body and its polar body can be handled using a unified framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Antunes, P.R.S.: Maximal and minimal norm of Laplacian eigenfunctions in a given subdomain. Inverse Probl. 32(11), 115003 (2016)

    Article  MATH  Google Scholar 

  2. Antunes, P.R.S., Bogosel, B.: Parametric shape optimization using the support function (2021)

  3. Antunes, P.R.S., Freitas, P.: Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154(1), 235–257 (2012)

    Article  MATH  Google Scholar 

  4. Antunes, P.R.S., Henrot, A.: On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1577–1603 (2011)

    MATH  Google Scholar 

  5. Bartels, S., Wachsmuth, G.: Numerical approximation of optimal convex shapes. SIAM J. Sci. Comput. 42(2), A1226–A1244 (2020)

    Article  MATH  Google Scholar 

  6. Bayen, T.: Analytical parameterization of rotors and proof of a goldberg conjecture by optimal control theory. SIAM J. Control. Optim. 47(6), 3007–3036 (2009)

    Article  MATH  Google Scholar 

  7. Bayen, T., Henrion, D.: Semidefinite programming for optimizing convex bodies under width constraints. Optim. Methods Softw. 27(6), 1073–1099 (2012)

    Article  MATH  Google Scholar 

  8. Bogosel, B., Henrot, A., Lucardesi, I.: Minimization of the eigenvalues of the Dirichlet-Laplacian with a diameter constraint. SIAM J. Math. Anal. 50(5), 5337–5361 (2018)

    Article  MATH  Google Scholar 

  9. Böröczky, K.J., Makai, E., Jr., Meyer, M., Reisner, S.: On the volume product of planar polar convex bodies–lower estimates with stability. Studia Sci. Math. Hungar. 50(2), 159–198 (2013)

    MATH  Google Scholar 

  10. Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems. Progress in Nonlinear Differential Equations and their Applications, 65. Birkhäuser Boston, Inc., Boston, MA (2005)

  11. Delfour, M.C., Zolésio, J.-P.: Shapes and geometries, volume 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition. Metrics, analysis, differential calculus, and optimization (2011)

  12. Grisvard, P.: Monographs and Studies in Mathematics. Elliptic problems in nonsmooth domains, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)

    Google Scholar 

  13. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MATH  Google Scholar 

  14. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel (2006)

    Book  MATH  Google Scholar 

  15. Henrot, A., Oudet, E.: Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 169(1), 73–87 (2003)

    Article  MATH  Google Scholar 

  16. Henrot, A., Pierre, M.: Shape variation and optimization, volume 28 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich. A geometrical analysis, English version of the French publication [ MR2512810] with additions and updates (2018)

  17. Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT 55(2), 459–485 (2015)

    Article  MATH  Google Scholar 

  18. Jaglom, I.M., Boltjanskiĭ, V.G.: Convex Figures. Translated by Paul J. Kelly and Lewis F. Walton. Holt, Rinehart and Winston, New York (1960)

  19. Lachand-Robert, T., Oudet, E.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16(2), 368–379 (2005)

    Article  MATH  Google Scholar 

  20. Lamboley, J., Novruzi, A.: Polygons as optimal shapes with convexity constraint. SIAM J. Control Optim. 48(5), 3003–3025 (2009)

    Article  MATH  Google Scholar 

  21. Lamboley, J., Novruzi, A., Pierre, M.: Polygons as maximizers of dirichlet energy or first eigenvalue of dirichlet-laplacian among convex planar domains (2021)

  22. Mérigot, Q., Oudet, E.: Handling convexity-like constraints in variational problems. SIAM J. Numer. Anal. 52(5), 2466–2487 (2014)

    Article  MATH  Google Scholar 

  23. Oudet, É.: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM Control Optim. Calc. Var. 10(3), 315–330 (2004)

    Article  MATH  Google Scholar 

  24. Rieger, J.: A Galerkin approach to optimization in the space of convex and compact subsets of \({\mathbb{R} }^d\). J. Glob. Optim. 79(3), 593–615 (2021)

    Article  MATH  Google Scholar 

  25. Sayed, A.A., Bogosel, B., Henrot, A., Nacry, F.: Maximization of the steklov eigenvalues with a diameter constraint (2020)

  26. Schneider, R.: Encyclopedia of Mathematics and Its Applications. Convex bodies: the Brunn-Minkowski theory, vol. 151. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  27. Sokołowski, J., Zolésio, J.-P.: Springer Series in Computational Mathematics. Introduction to shape optimization, vol. 16. Springer-Verlag, Berlin (1992)

    Google Scholar 

  28. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1, Ser. A), 25–57 (2006)

    Article  MATH  Google Scholar 

  29. Zhu, S., Hu, X., Liao, Q.: Convergence analysis of Galerkin finite element approximations to shape gradients in eigenvalue optimization. BIT 60(3), 853–878 (2020)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the authors of [5] for sharing information about the numerical optimizers from their work. The author was partially supported by the ANR Shapo (ANR-18-CE40- 0013) programme. The anonymous reviewer is warmly thanked for the careful read of the manuscript and for the suggestions that helped improve its quality.

Funding

The author was partially supported by the ANR Shapo (ANR-18-CE40-0013) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beniamin Bogosel.

Ethics declarations

Competing Interests

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Code for Symbolic Computations

Code for Symbolic Computations

In order to avoid writing the tedious computations leading to the formulas (14), (16), (29), scripts performing the equivalent symbolic computations in Mathematica are provided below.

Mathematica script for the computation (14):

figure a

Mathematica script for the computation (16):

figure b

Mathematica script for the computation (29):

figure c

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogosel, B. Numerical Shape Optimization Among Convex Sets. Appl Math Optim 87, 1 (2023). https://doi.org/10.1007/s00245-022-09920-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09920-w

Keywords

Mathematics Subject Classification

Navigation