Skip to main content
Log in

Hydrogeochemical Processes Governing Uranium Mobility: Inferences from the Anthropogenically Disturbed, Semi-arid Region of India

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Khetri Copper Belt, Rajasthan, is anthropogenically active and geologically belongs to the Delhi super-group. A study was designed to understand the geochemical processes controlling the elemental mobility in the groundwater. Sampling sites were divided into three zones, i.e. copper, quartzite and granite mine zones depending on the type of mineral excavated. A total of 32 representative groundwater samples were collected and analysed for heavy metals and radionuclide (U) using ICP–MS. A maximum U concentration (average 87 µgL−1) is observed in the quartzite mine zone, and minimum (average 13 µgL−1) is found in the copper mine zone samples. A high concentration of U (maximum of 430 µgL−1) in groundwater is attributed to mineral dissolution due to geogenic and anthropogenic activities. Despite the presence of Jaspura and Gothra granitoid in the copper mine zone, the abundance of U is low suggesting the scavenging of U by sulphides or iron oxides. Additionally, at the confluence of two geological groups, Fe concentration is found high with a low concentration of U which further confirms scavenging of U. It is evident from the results that in the absence of iron-bearing sulphides, U concentration in groundwater would be very high compared to the current concentration. It also indicates low concentration of U in the copper mine zone is due to dissolution of Fe sulphide-rich waste. The present study recommends further research to understand the feasibility of mining waste for the removal of U contamination from groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelouas A, Lutze W, Nuttall HE (1999) Oxidative dissolution of uraninite precipitated on Navajo sandstone. J Cont Hyd 36:353–375

    Article  CAS  Google Scholar 

  • Adithya VS, Chidambaram S, Keesari T, Mohokar HV, Prasanna MV (2019) Occurrence of uranium in groundwater along the lithological contacts in central Tamilnadu, India: an isotope hydrogeochemical perspective. Exposur Health 11:277–290

    Article  Google Scholar 

  • AERB (2004) Drinking Water Specifications in India. Department of Atomic Energy, Govt. of India. Atomic Energy Regulatory Board.

  • Ayotte JD, Flanagan SM, Morrow WS (2007) Occurrence of Uranium and 222Radon in Glacial and Bedrock Aquifers in the Northern United States, 1993–2003. Citeseer.

  • Baidya AS, Pal DC (2020) Geochemical evolution and timing of uranium mineralization in the Khetri Copper Belt, western India. Ore Geol Rev 127:103794

    Article  Google Scholar 

  • Baidya AS, Paul J, Pal DC, Upadhyay D (2017) Mode of occurrences and geochemistry of amphibole in the Kolihan-Chandmari copper deposits, Rajasthan, India: insight into the ore- forming process. Ore Geol Rev 80:1092–1110

    Article  Google Scholar 

  • Banks D, Rohr-Torp E, Skarphagen H (1992) An integrated study of a Precambrian granite aquifer. riveter. Southeastern Norway nor Geol Unders Bull 422:47–66

    CAS  Google Scholar 

  • Blantz RC, Pelayo JC, Gushwa LC, Myers RR, Evan AP (1985) Functional basis for the glomerular alterations in uranyl nitrate acute renal failure. Kidney Int 28:733–743

    Article  CAS  Google Scholar 

  • Brugge D, Buchner V (2011) Health effects of uranium: new research findings. Rev Environ Health 26:231–249

    CAS  Google Scholar 

  • Burowa KR, Belitz K, Dubrovsky NM, Jurgens BC (2017) Large decadal-scale changes in uranium and bicarbonate in groundwater of the irrigated western U.S. Sci Total Environ 586:87–95

    Article  CAS  Google Scholar 

  • Cánovas CR, Macías F, Pérez-López R (2016) Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer. J Contam Hydrol 188:29–43

    Article  CAS  Google Scholar 

  • Central Groundwater Board (2008) Groundwater brochure for Jhunjhunu district, Rajasthan. Government of India, pp 7–11.

  • Coyte RM, Jain RC, Srivastava SK, Sharma KC, Khalil A, Ma L, Vengosh A (2018) Large-scale uranium contamination of groundwater resources in India. Environ Sci Technol Lett 5:341–347

    Article  CAS  Google Scholar 

  • Coyte RM, Singh A, Furst KE, Mitch WA, Vengosh A (2019) Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India. Sci Total Environ 688:1216–1227

    Article  CAS  Google Scholar 

  • Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB (2004) Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Environ Health Part B 7:297–317

    Article  CAS  Google Scholar 

  • Cumberland SA, Douglas G, Grice K, Moreau JW (2016) Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes. Earth Sci Rev 159:160–185

    Article  CAS  Google Scholar 

  • Cuvier A, Panza F, Pourcelot L, Foissard B, Cagnat X, Prunier J, Beek P (2015) Uranium decay daughters from isolated mines: accumulation and sources. J Environ Radioact 149:110–120

    Article  CAS  Google Scholar 

  • Das Gupta SP (1968) The structural history of the Khetri Copper Belt, Jhunjhunu and Sikar districts. Rajasthan Geol Sur India 98:170

    Google Scholar 

  • Deditius AP, Utsunomiya S, Ewing RC (2008) The chemical stability of coffinite, USiO4 center dot nH(2)O; 0 < n < 2, associated with organic matter: a case study from Grants uranium region, New Mexico, USA. Chem Geol 251(1–4):33–49

    Article  CAS  Google Scholar 

  • Devaraj N, Panda B, Chidambaram S, Prasanna MV, Singh DK, Ramanathan AL, Sahoo SK (2021) Spatio-temporal variations of Uranium in groundwater: implication to the environment and human health. Sci Total Environ 775:145787

    Article  CAS  Google Scholar 

  • Duggal V, Rani A, Balaram V (2016) Assessment of age-dependent radiation dose due to intake of uranium and thorium in drinking water from Sikar district, Rajasthan, India. Radiat Prot Dosim 171:257–261

    Article  CAS  Google Scholar 

  • Duggal V, Sharma S, Mehra R (2020) Risk assessment of radon in drinking water in Khetri Copper Belt of Rajasthan. India. Chemosphere 239:124782

    Article  CAS  Google Scholar 

  • Eurostat (2017) Generation of waste by waste category, http://appsso.eurostat.ec.europa.eu/nui/show.do?Dataset=env_wasgen&lang=en.

  • Foster S, Loucks D (2006) Non-renewable groundwater resources. UNESCO, IHP-VI, Series on Groundwater, No. 10, Paris, 81 pp.

  • Galhardi JA, de Mello JWV, Wilkinson KJ (2020) Environmental and health risk assessment of agricultural areas adjacent to uranium ore fields in Brazil. Environ Geochem Health 42:3965–3981

    Article  CAS  Google Scholar 

  • Garralón PGA, Buil B, Turrero MJ, Sánchez L, de la Cruz B (2006) Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Sci Total Environ 366(1):295–309

    Article  CAS  Google Scholar 

  • Giblin AM, Batts BD, Swaine DJ (1981) Laboratory simulation studies of uranium mobility in natural waters. Geochim Cosmochim Acta 45:699–709

    Article  CAS  Google Scholar 

  • Gong Y, Tang J, Zhao D (2016) Application of iron sulfide particles for groundwater and soil remediation: a review. Water Res 89:309–320

    Article  CAS  Google Scholar 

  • Gorman-Lewis D, Burns PC, Fein JB (2008a) Review of uranyl mineral solubility measurements. J Chem Thermodyn 40(3):335–352

    Article  CAS  Google Scholar 

  • Gorman-Lewis D, Fein JB, Burns PC, Szymanowski JE, Converse J (2008b) Solubility measurements of the uranyl oxide hydrate phases metaschoepite, compreignacite, Na–compreignacite, becquerelite, and clarkeite. J Chem Thermodyn 40(6):980–990

    Article  CAS  Google Scholar 

  • Gorman-Lewis D, Mazeina L, Fein JB, Szymanowski JES, Burns PC, Navrotsky A (2007) Thermodynamic properties of soddyite from solubility and calorimetry measurements. J Chem Thermodyn 39(4):568–575

    Article  CAS  Google Scholar 

  • Gorman-Lewis D, Shvareva T, Kubatko KA, Burns PC, Wellman DM, McNamara B, Szymanowski JES, Navrotsky A, Fein JB (2009) Thermodynamic properties of autunite, uranyl hydrogen phosphate, and uranyl orthophosphate from solubility and calorimetric measurements. Environ Sci Technol 43(19):7416–7422

    Article  CAS  Google Scholar 

  • GSI (2011) Geology and mineral resources of Rajasthan, Geological Survey of India, Miscellaneous Publication No. 30 Part 12, 3rd Revised Edition. ISSN 0579-4706, PGSI, 327, 700–2010 (DSK-II).

  • Gupta P, Guha DB, Chattopadhyay B (1998) Basement–cover relationship in the Khetri Copper Belt and the emplacement mechanism of the granite massifs, Rajasthan. J Geol Soc India 52:417–432

    CAS  Google Scholar 

  • Gustafsson JP, Dässman E, Bäckström M (2009) Towards a consistent geochemical model for prediction of uranium(VI) removal from groundwater by ferrihydrite. Appl Geochem 24:454–462

    Article  CAS  Google Scholar 

  • Haakonde T, Yabe J, Choongo K, Chongwe G, Nchima G (2021) Islam MS (2021) Uranium contamination of milk from cattle in the uranium-mining area in Siavonga District of Zambia: a preliminary human health risk assessment. Bull Natl Res Cent 45:96

    Article  Google Scholar 

  • He X, Li P (2020) Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks. Expo Health 12(3):385–401. https://doi.org/10.1007/s12403-020-00344-x

    Article  CAS  Google Scholar 

  • He X, Li P, Ji Y, Wang Y, Su Z, Elumalai V (2020) Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: occurrence, distribution and management. Expo Health 12(3):355–368. https://doi.org/10.1007/s12403-020-00347-8

    Article  CAS  Google Scholar 

  • He X, Li P, Wu J, Wei M, Ren X, Wang D (2021) Poor groundwater quality and high potential health risks in the Datong Basin, northern China: research from published data. Environ Geochem Health 43(2):791–812. https://doi.org/10.1007/s10653-020-00520-7

    Article  CAS  Google Scholar 

  • Heron AM (1923) Geology of western Jaipur. Rec Geol Surv India 54(4):345–397

    Google Scholar 

  • Hobday DK, Galloway WE (1999) Groundwater processes and sedimentary uranium deposits. Hydrogeol J 7(1):127–138

    Article  Google Scholar 

  • Hua B, Deng B (2008) Reductive Immobilization of Uranium(VI) by Amorphous Iron Sulfide. Environ Sci Technol 42:8703–8708

    Article  CAS  Google Scholar 

  • Jang JH, Dempsey BA, Burgos WD (2008) Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface cover-age, and humic acid. Water Res 42(8–9):2269–2277

    Article  CAS  Google Scholar 

  • Ji Y, Wu J, Wang Y, Elumalai V, Subramani T (2020) Seasonal variation of drinking water quality and human health risk assessment in Hancheng City of Guanzhong Plain. China Expo Health 12(3):469–485. https://doi.org/10.1007/s12403-020-00357-6

    Article  CAS  Google Scholar 

  • Jing C, Li YL, Landsberger S (2019) Review of soluble uranium removal by nanoscale zero valent iron. J Environ Radioact 164:65–72

    Article  CAS  Google Scholar 

  • Jordens A, Cheng YP, Waters KE (2013) A review of the beneficiation of rare earth element bearing minerals. Miner Eng 41:97–114

    Article  CAS  Google Scholar 

  • Kanzari A, Gérard M, Boekhout F, Galoisy L, Calas G, Descostes M (2017) Impact of incipient weathering on uranium migration in granitic waste rock piles from former U mines (Limousin, France). J Geochem Explor 183:114–126

    Article  CAS  Google Scholar 

  • Katz SA (2014) The chemistry and toxicology of depleted uranium. Toxics 2:50–78

    Article  Google Scholar 

  • Kaur G, Mehta PK (2005) The Gothara plagiogranite: evidence for oceanic magmatism in a non-ophiolitic association, North Khetri copper belt, Rajasthan, India? J Asian Earth Sci 25:805–819

    Article  Google Scholar 

  • Kaur P, Chaudhri N, Hofmann AW, Raczek I, Okrusch M, Skora S, Koepke J (2014) Metasomatism of ferroan granites in the northern Aravalli orogen, NW India: geochemical and isotopic constraints, and its metallogenic significance. Int J Earth Sci 103:1083–1112

    Article  CAS  Google Scholar 

  • Kaur P, Zeh A, Chaudhri N (2017) Palaeoproterozoic continental arc magmatism, and Neoproterozoic metamorphism in the Aravalli-Delhi orogenic belt, NW India: New constraints from in situ zircon U-Pb-Hf isotope systematics, monazite dating and whole-rock geochemistry. J Asian Earth Sc 136:68–88

    Article  Google Scholar 

  • Kim H-J, Kim Y (2021) Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Chemosphere 269:128720

    Article  CAS  Google Scholar 

  • Knight J, Lowe J, Joy S, Cameron J, Merrillees J, Nag S, Shah N, Dua G, Jhala K (2002) The Khetri Copper Belt, Rajasthan: iron oxide copper-gold terrane in the Proterozoic of NW India. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 321–341

    Google Scholar 

  • Kozak K, Mazur J, Vautopic J, Grzadziel D, Kobal I, Omran KMH (2013) The potential health hazard due to elevated radioactivity in old uranium mines in Dolina Białego, Tatra mountains, Poland. Isot Environ Health Stud 49:274–282

    Article  CAS  Google Scholar 

  • Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2005) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 113:68–72

    Article  CAS  Google Scholar 

  • Lahrouch F, Guo N, Hunault MOJY, Solari PL, Descostes M, Gerard M (2021) Uranium retention on iron oxyhydroxides in post-mining environmental conditions. Chemosphere 264(1):128473

    Article  CAS  Google Scholar 

  • Lariviere D, Packer AP, Marro L, Li C, Chen J, Cornett RJ (2007) Age dependence of natural uranium and thorium concentrations in bone. Health Phys 92:119–126

    Article  CAS  Google Scholar 

  • Leermakers M, Phrommavanh V, Drozdzak J, Gao Y, Nos J, Ml D (2016) DGT as a useful monitoring tool for radionuclides and trace metals in environments impacted by uranium mining: case study of the Sagnes wetland in France. Chemosphere 155:142–151

    Article  CAS  Google Scholar 

  • Li P, He S, He X, Tian R (2018) Seasonal hydrochemical characterization and groundwater quality delineation based on matter element extension analysis in a paper wastewater irrigation area, northwest China. Expo Health 10(4):241–258. https://doi.org/10.1007/s12403-17-0258-6

    Article  CAS  Google Scholar 

  • Li P, He X, Guo W (2019) Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of northwest China. Hum Ecol Risk Assess 25(1–2):11–31. https://doi.org/10.1080/10807039.2018.1553612

    Article  CAS  Google Scholar 

  • Li P, Tian R, Xue C, Wu J (2017) Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res 24(15):13224–13234. https://doi.org/10.1007/s11356-017-8753-7

    Article  Google Scholar 

  • Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016a) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert. Northwest China Expo Health 8(3):331–348. https://doi.org/10.1007/s12403-016-0193-y

    Article  CAS  Google Scholar 

  • Li P, Zhang Y, Yang N, Jing L, Yu P (2016b) Major ion chemistry and quality assessment of groundwater in and around a mountainous tourist town of China. Expo Health 8(2):239–252. https://doi.org/10.1007/s12403-016-0198-6

    Article  CAS  Google Scholar 

  • Li Z-J, Wang L, Yuan L-Y, Xiao C-L, Mei L, Zheng L-R, Zhang J, Yang J-H, Zhao Y-L, Zhu Z-T, Chai Z-F, Shi W-Q (2015) Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. J Hazard Mater 290:26–33

    Article  CAS  Google Scholar 

  • Liesch T, Hinrichsen S, Goldscheider N (2015) Uranium in groundwater - Fertilizers versus geogenic sources. Sci Total Environ 536:981–995

    Article  CAS  Google Scholar 

  • Locock AJ, Burns PC (2003) Crystal structures and synthesis of the copper-dominant members of the autunite and meta-autunite groups: torbernite, zeunerite, metatorbernite and metazeunerite. Can Mineral 41:489–502

    Article  CAS  Google Scholar 

  • Logue BA, Smith RW, Westall JC (2004) U(VI) adsorption on iron-coated sands: Comparison of approaches for modeling adsorption on heterogeneous environmental materials. Appl Geochem 19:1937–1951

    Article  CAS  Google Scholar 

  • Merkel BJ, Sperling B (1998) Hydrogeochemische Stoffsysteme Teil II. Kommissionsvertrieb Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Bonn

    Google Scholar 

  • Momčilović M, Kovačević J, Tanić M, Đorđević M, Bačić G, Dragović S (2013) Distribution of natural radionuclides in surface soils in the vicinity of abandoned uranium mines in Serbia. Environ Monit Assess 185(2): :1319–1329

  • Neiva AMR, Carvalho PCS, Antunes IMHR, Silva MMVG, Santos ACT, Cabral Pinto MMS, Cunha PP (2014) Contaminated water, stream sediments and soils close to the abandoned Pinhal do Souto uranium mine, central Portugal. J Geochem Explor 136:102–117

    Article  CAS  Google Scholar 

  • O’Brien TJ, Williams PA (1983) The aqueous chemistry of uranium minerals. 4. Schröckingerite, grimselite, and related alkali uranyl carbonates. Mineral Mag 47(342):69–73

    Article  CAS  Google Scholar 

  • Olías M, Cánovas CR, Basallote MD (2021) Surface and groundwater quality evolution in the agrio and guadiamar rivers after the Aznalcóllar mine spill (SW Spain): lessons learned. Mine Water Environ 40:235–249

    Article  CAS  Google Scholar 

  • Paradis CJ, Jagadamma S, Watson DB, McKay LD, Hazen TC, Park M, Istok JD (2016) In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions. J Contam Hydro 187:55–64

    Article  CAS  Google Scholar 

  • Patra A, Mohapatra S, Sahoo S, Lenka P, Dubey J, Tripathi R, Puranik V (2013) Age-dependent dose and health risk due to intake of uranium in drinking water from Jaduguda, India. Radiat Protect Dosim 155:210–216

    Article  CAS  Google Scholar 

  • Pradhan SK, Ambade B (2019) A modified method for the determination of uranium in Nb/Ta minerals by LED fluorimetry. J Radioanal Nucl Chem 320:459–466

    Article  CAS  Google Scholar 

  • Pradhan SK, Ambade B (2020a) Extractive separation of rare earth elements and their determination by inductively coupled plasma optical emission spectrometry in geological samples. J Anal at Spectrom 35:1395

    Article  CAS  Google Scholar 

  • Pradhan SK, Ambade B (2020b) Separation and preconcentration of trace uranium(VI) by solid phase extraction with 2,3 Dihydroxynapthelene and Cetyltrimethylammonium Bromide on molten Napthelene and its LED fluorimeteric determination in water samples. Anal Sci 36:207–212

    Article  CAS  Google Scholar 

  • Pradhan SK, Ambade B, Tarafder PK (2019) Speciation of Fe(II) and Fe(III) in geological samples by solvent extraction and flame atomic absorption spectrometry (FAAS). At Spectrosc 40(4):145–151

    Article  CAS  Google Scholar 

  • Pradhan SK, Ambade B, Tarafder PK (2020) An evolved fluorimetric determination of uranium in rock/mineral sample solutions containing hydrolysable elements such as Nb, Ta, Zr and Ti sequestered by bi-fluoride. Appl Radiat Isot 160:109126

    Article  CAS  Google Scholar 

  • Punia A, Siddaiah NS (2017) Assessment of heavy metal contamination in groundwater of Khetri copper mine region, India and health risk assessment. Asian J Water Environ Pollut 14(4):9–19

    Article  Google Scholar 

  • Punia A, Siddaiah NS, Singh SK (2017) Source and assessment of heavy metal pollution at Khetri copper mine tailings and surrounding soil, Rajasthan, India. Bull Environ Contam Toxicol 99:633–641

    Article  CAS  Google Scholar 

  • Radojevic M, Bashkin VN (1999) Practical environmental analysis. R Soc Chem 1999:154–155

    Google Scholar 

  • Rani A, Mehra R, Duggal V (2013a) Analysis of uranium concentration in drinking water samples using ICPMS. Health Phys 104:251–255

    Article  CAS  Google Scholar 

  • Rani A, Mehra R, Duggal V, Balaram V (2013b) Analysis of uranium concentration in drinking water samples using ICPMS. Health Phys 104(3):251–255

    Article  CAS  Google Scholar 

  • Ray AE, Bargar JR, Sivaswamy V, Dohnalkova AC, Fujita Y, Peyton BM, Magnuson TS (2011) Evidence for multiple modes of uranium immobilization by an anaerobic bacterium. Geochim Cosmochim Acta 75(10):2684–2695

    Article  CAS  Google Scholar 

  • Ren X, Li P, He X, Su F, Elumalai V (2021) Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin. China Arch Environ Contam Toxicol 80(1):74–91. https://doi.org/10.1007/s00244-020-00772-5

    Article  CAS  Google Scholar 

  • Riedel T, Kübeck C (2018) Uranium in groundwater - A synopsis based on a large hydrogeochemical data set. Water Res 129:29–38

    Article  CAS  Google Scholar 

  • Roy Chowdhury MK, Das Gupta SP (1965) Ore-localization in the Khetri copper belt, Rajasthan, India. Econ Geol 60:69–88

    Article  Google Scholar 

  • Russell JJ, Kathren RL (2004) Uranium deposition and retention in a USTUR whole body case. Health Phys 86:273–284

    Article  CAS  Google Scholar 

  • Saini K, Singh P, Bajwa BS (2016) Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India. Appl Radiat Isot 118:196–202

    Article  CAS  Google Scholar 

  • Sarkar SC, Dasgupta S (1980) Geologic setting, genesis and transformation of the sulfide deposits in the northern part of the Khetri copper belt, Rajasthan, India- an outline. Miner Deposita 15:117–137

    Article  CAS  Google Scholar 

  • Scherrer NC, Engi M, Gnos E, Jakob V, Lietchi A (2000) Monazite Analysis; From Sample Preparation to Microprobe Age Dating and REE Quantification. 80: 93–105

  • Selvi B, Vijayakumar B, Rana B, Ravi P (2016) Distribution of natural uranium in groundwater around Kudankulam. Radiat Protect Environ 39:25–25

    Article  Google Scholar 

  • Sharma S, Kumar A, Mehra R, Mishra R (2017) Ingestion doses and hazard quotients due to intake of Uranium in drinking water from Udhampur District of Jammu and Kashmir State, India. Radioprotection 52:109–118

    Article  CAS  Google Scholar 

  • Sharma T, Sharma A, Kaur I, Mahajan RK, Litoria PK, Sahoo SK, Bajwa BS (2019) Uranium distribution in groundwater and assessment of age dependent radiation dose in Amritsar, Gurdaspur and Pathankot districts of Punjab, India. Chemosphere 219:607–616

    Article  CAS  Google Scholar 

  • Shin W, Oh J, Choung S, Cho B, Lee K, Yun U, Woo N, Kim HK (2016) Distribution and potential health risk of groundwater uranium in Korea. Chemosphere 163:108–115

    Article  CAS  Google Scholar 

  • Smith M, Roychoudhury AN (2013) Mobilisation of Iron from rocks in a fractured aquifer: lithological and geochemical controls. Appl Geochem 31:171–186

    Article  CAS  Google Scholar 

  • Stalder E, Blanc A, Haldimann M, Dudler V (2012) Occurrence of uranium in Swiss drinking water. Chemosphere 86:672–679

    Article  CAS  Google Scholar 

  • Stier O (1983) Untersuchungen zur Verteilung von Uran in Gesteinen, Böden, und Bachsedimenten der Granitmassive des südöstlichen Bayerischen Waldes mit besonderer Berücksichtigung der geochemischen Uranexploration. RWTH Aachen.

  • Thom JGM, Dipple GM, Power IM, Harrison AL (2013) Chrysotile dissolution rates: Implications for carbon sequestration. Appl Geochem 35:244–254

    Article  CAS  Google Scholar 

  • Tomiyama S, Igarashi T, Tabelin CB, Tangviroon P, Ii H (2019) Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. J Contam Hydrol 225:103502

    Article  CAS  Google Scholar 

  • Tricca A, Porcelli D, Wasserburg GJ (2000) Factors controlling the groundwater transport of U, Th, Ra, and Rn. J Earth Syst Sci 109:95–108

    Article  CAS  Google Scholar 

  • USEPA (1999) United States Environmental Protection Agency, Cancer risk coefficients for environmental exposure to radionuclides. Federal Guidance Report No. 13, EPA 402-R-99–001.

  • Villa M, Manjon G, Hurtado S, Garcia-Tenorio R (2011) Uranium pollution in an estuary affected by pyrite acid mine drainage and releases of naturally occur-ring radioactive materials. Mar Pollut Bull 62:1521–1529

    Article  CAS  Google Scholar 

  • Waseem A, Ullah H, Rauf MK, Ahmad I (2015) Distribution of natural uranium in surface and groundwater resources: a review. Crit Rev Environ Sci Technol 45(22):2391–2423

    Article  CAS  Google Scholar 

  • Watson DB, Wu WM, Mehlhorn T, Tang GP, Earles J, Lowe K, Gihring TM, Zhang GX, Phillips J, Boyanov MI, Spalding BP, Schadt C, Kemner KM, Criddle CS, Jardine PM, Brooks SC (2013) In situ bioremediation of uranium with emulsified vegetable oil as the electron donor. Environ Sci Technol 47(12):6440–6448

    Article  CAS  Google Scholar 

  • Wei M, Wu J, Li W, Zhang Q, Su F, Wang Y (2021) Groundwater geochemistry and its impacts on groundwater arsenic enrichment, variation, and health risks in Yongning County. Expo Health, Yinchuan Plain of northwest China. https://doi.org/10.1007/s12403-021-00391-y

    Book  Google Scholar 

  • Wei Y, Jin L, Li Z, Liu J, Wang L, Pi X, Yin S, Wang C, Ren A (2019) Levels of uranium and thorium in maternal scalp hair and risk of orofacial clefts in offspring. J Environ Radioact 204:125–131

    Article  CAS  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, vol 1, 4th edn. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Wu J, Zhang Y, Zhou H (2020) Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County Ordos Basin of Northwest China . Geochemistry 80(4):125607. https://doi.org/10.1016/j.chemer.2020.125607

    Article  CAS  Google Scholar 

  • Wu Y, Wang Y, Xie X (2014) Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Sci Total Environ 472:809–817

    Article  CAS  Google Scholar 

  • Yang Q, Smitherman P, Hess CT, Culbertson CW, Marvinney RG, Smith AE, Zheng Y (2014) Uranium and radon in private bedrock well water in Maine: geospatial analysis at two scales. Environ Sci Technol 48:4298–4306

    Article  CAS  Google Scholar 

  • Zamora ML, Tracy BL, Zielinski JM, Meyerhof DP, Moss MA (1998) Chronic ingestion of uranium in drinking water: a study of kidney bio effects in humans. Toxicol Sci 43:68–77

    Article  CAS  Google Scholar 

  • Zhao H, Song F, Su F, Shen Y, Li P (2021) Removal of cadmium from contaminated groundwater using a novel silicon/aluminum nanomaterial: an experimental study. Arch Environ Contam Toxicol 80(1):234–247. https://doi.org/10.1007/s00244-020-00784-1

    Article  CAS  Google Scholar 

  • Zhou P, Gu BH (2005) Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH. Environ Sci Technol 39:4435–4440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The postdoctoral fellowship of the Indian Institute of Technology Guwahati is acknowledged. The authors also acknowledge the support of IUAC for extending the ICPMS facility under the Geochronology project funded by the Ministry of Earth Sciences, Govt of India. The authors also acknowledge the help of Dr. Sumaya Prasad Dhal (Research Associate), IUAC, in the handling of the instrument.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anita Punia or Rishikesh Bharti.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punia, A., Bharti, R. & Kumar, P. Hydrogeochemical Processes Governing Uranium Mobility: Inferences from the Anthropogenically Disturbed, Semi-arid Region of India. Arch Environ Contam Toxicol 81, 386–396 (2021). https://doi.org/10.1007/s00244-021-00879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-021-00879-3

Navigation