Skip to main content
Log in

On the Early Evolution of Catabolic Pathways: A Comparative Genomics Approach. I. The Cases of Glucose, Ribose, and the Nucleobases Catabolic Routes

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Compared with the large corpus of published work devoted to the study of the origin and early development of anabolism, little attention has been given to the discussion of the early evolution of catabolism in spite of its significance. In the present study, we have used comparative genomics to explore the evolution and phylogenetic distribution of the enzymes that catalyze the extant catabolic pathways of the monosaccharides glucose and ribose, as well as those of the nucleobases adenine, guanine, cytosine, uracil, and thymine. Based on the oxygen dependence of the enzymes, their conservation, and evolution, we speculate on the relative antiquity of the pathways. Our results allow us to suggest which catabolic pathways and enzymes may have already been present in the last common ancestor. We conclude that the enzymatic degradations of ribose, as well as those of purines adenine and guanine, are among the most ancient catabolic pathways which can be traced by protein-based methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Barker HA, Beck JV (1941) The fermentetive decomposition of purines by Clostridium acidi-urici and Clostridium cylindrosporum. J Biol Chem 141:3–27

    CAS  Google Scholar 

  • Becerra A, Lazcano A (1998) The role of gene duplication in the evolution of purine nucleotide salvage pathways. Orig Life Evol Biosph 28(4–6):539–553

    Article  CAS  PubMed  Google Scholar 

  • Becerra A, Delaye L, Islas S, Lazcano A (2007) The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu Rev Ecol Evol Syst 38(1):361–379

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP (2012) Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem Soc Rev 41(16):5459–5472

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anollés K, Caetano-Anollés G (2013) Structural phylogenomics reveals gradual evolutionary replacement of abiotic chemistries by protein enzymes in purine metabolism. PLoS ONE 8(3):e59300

    Article  PubMed  PubMed Central  Google Scholar 

  • Caetano-Anollés G, Kim HS, Mittenthal JE (2007) The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci USA 104(22):9358–9363

    Article  PubMed  PubMed Central  Google Scholar 

  • Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP et al (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci USA 108(34):13995–13998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10(1):421

    Article  PubMed  PubMed Central  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33(1):1–36

    Article  CAS  Google Scholar 

  • Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA et al (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42(Database issue):D459–D471

    Article  CAS  PubMed  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke PH, Elsden SR (1980) The earliest catabolic pathways. J Mol Evol 15(4):333–338

    Article  CAS  PubMed  Google Scholar 

  • Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414(6866):879–883

    Article  CAS  PubMed  Google Scholar 

  • Delaye L, Becerra A, Lazcano A (2005) The last common ancestor: what’s in a name? Orig Life Evol Biosph 35(6):537–554

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Embley TM, Williams TA (2015) Steps on the road to eukaryotes. Nature 521(7551):169–170

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis: synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol 33(3):693–704

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11(4):293–311

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T et al (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34(Database issue):D247–D251

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Gribaldo S (2010) Bacteria with a eukaryotic touch: a glimpse of ancient evolution? Proc Natl Acad Sci USA 107(29):12739–12740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fothergill-Gilmore LA (1986) The evolution of the glycolytic pathway. Trends Biochem Sci 11(1):47–51

    Article  CAS  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S et al (2010) The NCBI BioSystems database. Nucleic Acids Res 38(Database issue):D492–D496

    Article  CAS  PubMed  Google Scholar 

  • Goldfine H (1965) The evolution of oxygen as a biosynthetic reagent. J Gen Physiol 49(1):Suppl:253–274

    Article  CAS  Google Scholar 

  • Goldman AD, Beatty JT, Landweber LF (2016) The TIM barrel architecture facilitated the early evolution of protein-mediated metabolism. J Mol Evol 82(1):17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13(3):407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayaishi O, Kornberg A (1952) Metabolism of cytosine, thymine, uracil, and barbituric acid by bacterial enzymes. J Biol Chem 197(2):717–732

    CAS  PubMed  Google Scholar 

  • Irving JA, Whisstock JC, Lesk AM (2001) Protein structural alignments and functional genomics. Proteins 42(3):378–382

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205

    Article  CAS  PubMed  Google Scholar 

  • Katsuragi T, Sakai T, Tonomura K (1986) Affinity chromatography of cytosine deaminase from Escherichia coli with immobilized pyrimidine compounds. Agric Biol Chem 50(7):1713–1719

    CAS  Google Scholar 

  • Keefe AD, Lazcano A, Miller SL (1995) Evolution of the biosynthesis of the branched-chain amino acids. Orig Life Evol Biosph 25(1–3):99–110

    Article  CAS  PubMed  Google Scholar 

  • Keller MA, Piedrafita G, Ralser M (2015) The widespread role of non-enzymatic reactions in cellular metabolism. Curr Opin Biotechnol 34C:153–161

    Article  Google Scholar 

  • Kim KM, Caetano-Anollés G (2011) The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evol Biol 11(1):140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll AH, Nowak MA (2017) The timetable of evolution. Sci Adv 3(5):e1603076

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebs HA (1981) The evolution of metabolic pathways. In: Carlile JF (ed) Molecular and cellular aspects of microbial evolution. Cambridge University Press, Cambridge, pp 215–228

    Google Scholar 

  • Krebs HA, Kornberg HL (1957) Energy transformations in living matter. Springer, Berlin

    Book  Google Scholar 

  • Lara FJS (1952) On the decomposition of pyrimidines by bacteria. II. Studies with cell-free enzyme preparations. J Bacteriol 64(2):279–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci USA 92(18):8158–8160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazcano A (2010) Which way to life? Orig Life Evol Biosph 40(2):161–167

    Article  PubMed  Google Scholar 

  • Lazcano A (2016) Alexandr I: oparin and the origin of life—a historical reassessment of the heterotrophic theory. J Mol Evol 83(5–6):214–222

    Article  CAS  PubMed  Google Scholar 

  • Lazcano A, Miller SL (1999) On the origin of metabolic pathways. J Mol Evol 49(4):424–431

    Article  CAS  PubMed  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci USA 95(14):7933–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh KD, Gyaneshwar P, Markenscoff Papadimitriou E, Fong R, Kim K-S, Parales R et al (2006) A previously undescribed pathway for pyrimidine catabolism. Proc Natl Acad Sci USA 103(13):5114–5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488):307–315

    Article  CAS  PubMed  Google Scholar 

  • Magrane M, Consortium U (2011) UniProt knowledgebase: a hub of integrated protein data. Database 2011(0):bar009

    Article  PubMed  PubMed Central  Google Scholar 

  • McMurry J, Begley TP (2005) The organic chemistry of biological pathways. Roberts and Company Publishers, Englewood

    Google Scholar 

  • Michal G (ed) (1998) Biochemical pathways: an atlas of biochemistry and molecular biology (First). Wiley, New York

    Google Scholar 

  • Michal G, Schomburg D (eds) (2012) Biochemical pathways: an atlas of biochemistry and molecular biology (Second). Wiley, Hoboken

    Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on the Earth. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Mirkin B, Fenner T, Galperin M, Koonin E (2003) Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 3(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Mistry J, Finn RD, Eddy SR, Bateman A, Punta M (2013) Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41:e121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano N, Orengo CA, Thornton JM (2002) One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol 321(5):741–765

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Okamoto K, Kawaguchi Y, Hori H, Matsumura T, Eger BT et al (2005) Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J Biol Chem 280(26):24888–24894

    Article  CAS  PubMed  Google Scholar 

  • Oparin AI (1924) The origin of life (Russian). Moscow Worker, Moscow

    Google Scholar 

  • Oparin AI (1938) The origin of life (English) (First Engl). The Macmillan Company, New York

    Google Scholar 

  • Oró J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Commun 2(6):407–412

    Article  Google Scholar 

  • Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature 191(4794):1193–1194

    Article  PubMed  Google Scholar 

  • Porter DJ, Austin EA (1993) Cytosine deaminase: the roles of divalent metal ions in catalysis. J Biol Chem 268(32):24005–24011

    CAS  PubMed  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242

    Article  CAS  PubMed  Google Scholar 

  • Prlic A, Bliven S, Rose PW, Bluhm WF, Bizon C, Godzik A, Bourne PE (2010) Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics 26(23):2983–2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C et al (2012) The Pfam protein families database. Nucleic Acids Res 40(Database issue):D290–D301

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz JC (1956) Purine fermentation by Clostridium cylindrosporum: III—4-Amino-5-imidazolecarboxylic acid and 4-aminoimidazole. J Biol Chem 218(1):175–187

    CAS  PubMed  Google Scholar 

  • Rabinowitz JC, Barker HA (1956a) Purine fermentation by Clostridium cylindrosporum: I—tracer experiments on the fermentation of guanine. J Biol Chem 218(1):147–160

    CAS  PubMed  Google Scholar 

  • Rabinowitz JC, Barker HA (1956b) Purine fermentation by Clostridium cylindrosporum: II—purine transformations. J Biol Chem 218(1):161–173

    CAS  PubMed  Google Scholar 

  • Rabinowitz JC, Pricer WE (1956a) Purine fermentation by Clostridium cylindrosporum: IV—4-ureido-5-imidazolecarboxylic acid. J Biol Chem 218(1):189–199

    CAS  PubMed  Google Scholar 

  • Rabinowitz JC, Pricer WE (1956b) Purine fermentation by Clostridium cylindrosporum: V—formiminoglycine. J Biol Chem 222(2):537–554

    CAS  PubMed  Google Scholar 

  • Ranea JAG, Sillero A, Thornton JM, Orengo CA (2006) Protein superfamily evolution and the last universal common ancestor (LUCA). J Mol Evol 63(4):513–525

    Article  CAS  PubMed  Google Scholar 

  • Rauchfuss H (2008) Chemical evolution and the origin of life (First). Springer, Heidelberg

    Google Scholar 

  • Raymond J, Blankenship RE (2004) Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2(4):199–203

    Article  CAS  Google Scholar 

  • Reeves RE, South DJ, Blytt HJ, Warren LG (1974) Pyrophosphate: d-fructose 6-phosphate 1-phosphotransferase: a new enzyme with the glycolytic function of 6-phosphofructokinase. J Biol Chem 249(24):7737–7741

    CAS  PubMed  Google Scholar 

  • Reid C, Orgel LE (1967) Model for origin of monosaccharides: Synthesis of sugars in potentially prebiotic conditions. Nature 216(5114):455–455

    Article  CAS  PubMed  Google Scholar 

  • Ritson D, Sutherland JD (2012) Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat Chem 4(11):895–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai T, Yu T-S, Taniguchi K, Omata S (1975) Purification of cytosine deaminase from Pseudomonas aureofaciens. Agric Biol Chem 39(10):2015–2020

    CAS  Google Scholar 

  • Saladino R, Crestini C, Cossetti C, Di Mauro E, Deamer D (2011) Catalytic effects of murchison material: prebiotic synthesis and degradation of RNA precursors. Orig Life Evol Biosph 41(5):437–451

    Article  CAS  PubMed  Google Scholar 

  • Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, … Schomburg D (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 41(Database issue):D764–D772

    CAS  PubMed  Google Scholar 

  • Schönheit P, Buckel W, Martin WF (2016) On the origin of heterotrophy. Trends Microbiol 24(1):12–25

    Article  PubMed  Google Scholar 

  • Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18(1–2):71–85

    Article  CAS  PubMed  Google Scholar 

  • Shapiro R (1999) Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc Natl Acad Sci USA 96(8):4396–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11(9):739–747

    Article  CAS  PubMed  Google Scholar 

  • Subbiah S, Laurents DV, Levitt M (1993) Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core. Curr Biol 3(3):141–148

    Article  CAS  PubMed  Google Scholar 

  • The UniProt Consortium (2012) Reorganizing the protein space at the universal protein resource (UniProt). Nucleic Acids Res, 40(Database issue), D71–D75

    Article  Google Scholar 

  • The UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res, 42(Database issue), D191–D198

    Google Scholar 

  • Verhees CH, Kengen SWM, Tuininga JE, Schut GJ, Adams MWW, De Vos WM, Van Der Oost J (2003) The unique features of glycolytic pathways in Archaea. Biochem J 375(Pt 2):231–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Doolittle RF, Bourne PE (2005) Phylogeny determined by protein domain content. Proceedings of the National Academy of Sciences of the USA, 102(2):373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Godzik A (2003) Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(Suppl 2):ii246–ii255

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Mario Rivas Medrano is a doctoral student from the Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received fellowship 255708 from CONACYT. Financial support to AB and AL from the PAPIIT-UNAM (IN223916) is gratefully acknowledged. We are indebted to Ricardo Hernandez-Morales for his technical support in the preparation of the manuscript. We appreciate the advice of Claudia Alvarez-Carreño while analyzing the crystallographic structures of proteins, and the programing skills of César Antonio Martínez Gutiérrez while developing the scripts and routines used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lazcano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 603 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas, M., Becerra, A. & Lazcano, A. On the Early Evolution of Catabolic Pathways: A Comparative Genomics Approach. I. The Cases of Glucose, Ribose, and the Nucleobases Catabolic Routes. J Mol Evol 86, 27–46 (2018). https://doi.org/10.1007/s00239-017-9822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-017-9822-8

Keywords

Navigation