Skip to main content

Advertisement

Log in

Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

PTEN mutation status is a pivotal biomarker for glioblastoma. This study aimed to establish a radiomic signature to predict PTEN mutation status in patients with glioblastoma, and to investigate the genetic background behind this radiomic signature.

Methods

In this study, a total of 862 radiomic features were extracted from each patient. The training (n = 69) and validation (n = 40) sets were retrospectively collected from the Cancer Genome Atlas and the Chinese Glioma Genome Atlas, respectively. The minimum redundancy maximum relevance (mRMR) algorithm was used to select the best predictive features of PTEN status. A machine learning model was then built with the selected features using a support vector machine classifier. The predictive performance of each selected feature and the complete model were evaluated via the area under the curve from receiver operating characteristic analysis in both the training and validation sets. The genetic background underlying the radiomic signature was determined using radiogenomic analysis.

Results

Six features were selected using the mRMR algorithm, including two features derived from contrast-enhanced images and four features derived from T2-weighted images. The predictive performance of the machine learning model for the training and validation sets were 0.925 and 0.787, respectively, which were better than the individual features. Radiogenomics analysis revealed that the PTEN-associated biological processes could be described using the radiomic signature.

Conclusion

These results show that radiomic features derived from preoperative MRI can predict PTEN mutation status in glioblastoma patients, thus providing a novel noninvasive imaging biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PTEN:

Phosphatase and tensin homolog

mRMR:

Minimum redundancy maximum relevance

CE:

Contrast enhancement

T2:

T2-weighted

MR:

Magnetic resonance

TCGA:

The Cancer Genome Atlas

AUC:

Area under the curve

SVM:

Support vector machine

ROC:

Receiver operating characteristic

DAVID:

Database for Annotation, Visualization and Integrated Discovery

References

  1. Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE, Buckner JC, Erickson BJ (2016) MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43(6):2835–2844. https://doi.org/10.1118/1.4948668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chai RC, Liu YQ, Zhang KN, Wu F, Zhao Z, Wang KY, Jiang T, Wang YZ (2019) A novel analytical model of MGMT methylation pyrosequencing offers improved predictive performance in patients with gliomas. Mod Pathol 32(1):4–15. https://doi.org/10.1038/s41379-018-0143-2

    Article  CAS  PubMed  Google Scholar 

  3. Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang X, Jiang C, Kang C, Li X, Chen L, Qiu X, Wang W, Li W, Yao Y, Li S, Li S, Wu A, Sai K, Bai H, Li G, Chen B, Yao K, Wei X, Liu X, Zhang Z, Dai Y, Lv S, Wang L, Lin Z, Dong J, Xu G, Ma X, Cai J, Zhang W, Wang H, Chen L, Zhang C, Yang P, Yan W, Liu Z, Hu H, Chen J, Liu Y, Yang Y, Wang Z, Wang Z, Wang Y, You G, Han L, Bao Z, Liu Y, Wang Y, Fan X, Liu S, Liu X, Wang Y, Wang Q, Chinese Glioma Cooperative G (2016) CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 375(2):263–273. https://doi.org/10.1016/j.canlet.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  4. Katsetos CD, Draberova E, Smejkalova B, Reddy G, Bertrand L, de Chadarevian JP, Legido A, Nissanov J, Baas PW, Draber P (2007) Class III beta-tubulin and gamma-tubulin are co-expressed and form complexes in human glioblastoma cells. Neurochem Res 32(8):1387–1398. https://doi.org/10.1007/s11064-007-9321-1

    Article  CAS  PubMed  Google Scholar 

  5. Koul D (2008) PTEN signaling pathways in glioblastoma. Cancer Biol Ther 7(9):1321–1325

    Article  CAS  PubMed  Google Scholar 

  6. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Myung JK, Cho HJ, Park C-K, Kim S-K, Phi JH, Park S-H (2012) IDH1 mutation of gliomas with long-term survival analysis. Oncol Rep 28(5):1639–1644. https://doi.org/10.3892/or.2012.1994

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, Shao N, Luo G, Li L, Zheng L, Nilsson-Ehle P, Xu N (2010) Mutations of PTEN gene in gliomas correlate to tumor differentiation and short-term survival rate. Anticancer Res 30(3):981–985

    CAS  PubMed  Google Scholar 

  9. Benitez JA, Ma J, D'Antonio M, Boyer A, Camargo MF, Zanca C, Kelly S, Khodadadi-Jamayran A, Jameson NM, Andersen M, Miletic H, Saberi S, Frazer KA, Cavenee WK, Furnari FB (2017) PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nat Commun 8:15223. https://doi.org/10.1038/ncomms15223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu PF, Yang JA, Liu JH, Yang X, Liao JM, Yuan FE, Liu BH, Chen QX (2019) PI3Kbeta inhibitor AZD6482 exerts antiproliferative activity and induces apoptosis in human glioblastoma cells. Oncol Rep 41(1):125–132. https://doi.org/10.3892/or.2018.6845

    Article  CAS  PubMed  Google Scholar 

  11. Wu DM, Hong XW, Wen X, Han XR, Wang S, Wang YJ, Shen M, Fan SH, Zhuang J, Zhang ZF, Shan Q, Li MQ, Hu B, Sun CH, Lu J, Zheng YL (2019) MCL1 gene silencing promotes senescence and apoptosis of glioma cells via inhibition of the PI3K/Akt signaling pathway. IUBMB Life 71(1):81–92. https://doi.org/10.1002/iub.1944

    Article  CAS  PubMed  Google Scholar 

  12. Gu J-J, Fan K-C, Zhang J-H, Chen H-J, Wang S-S (2017) Suppression of microRNA-130b inhibits glioma cell proliferation and invasion, and induces apoptosis by PTEN/AKT signaling. Int J Mol Med. https://doi.org/10.3892/ijmm.2017.3233

  13. Karsy M, Neil JA, Guan J, Mahan MA, Colman H, Jensen RL (2015) A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus 38(3):E4. https://doi.org/10.3171/2015.1.FOCUS14755

    Article  PubMed  Google Scholar 

  14. Nakamura JL, Karlsson A, Arvold ND, Gottschalk AR, Pieper RO, Stokoe D, Haas-Kogan DA (2005) PKB/Akt mediates radiosensitization by the signaling inhibitor LY294002 in human malignant gliomas. J Neuro-Oncol 71(3):215–222. https://doi.org/10.1007/s11060-004-1718-y

    Article  CAS  Google Scholar 

  15. Abounader R (2009) Interactions between PTEN and receptor tyrosine kinase pathways and their implications for glioma therapy. Expert Rev Anticancer Ther 9(2):235–245. https://doi.org/10.1586/14737140.9.2.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo S, Lei K, Xiang D, Ye K (2018) NQO1 is regulated by PTEN in glioblastoma, mediating cell proliferation and oxidative stress. Oxidative Med Cell Longev 2018:9146528. https://doi.org/10.1155/2018/9146528

    Article  CAS  Google Scholar 

  17. Wang Y, Fan X, Zhang C, Zhang T, Peng X, Qian T, Ma J, Wang L, Li S, Jiang T (2014) Identifying radiographic specificity for phosphatase and tensin homolog and epidermal growth factor receptor changes: a quantitative analysis of glioblastomas. Neuroradiology 56(12):1113–1120. https://doi.org/10.1007/s00234-014-1427-y

    Article  PubMed  Google Scholar 

  18. Ryoo I, Choi SH, Kim JH, Sohn CH, Kim SC, Shin HS, Yeom JA, Jung SC, Lee AL, Yun TJ, Park CK, Park SH (2013) Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles. PLoS One 8(8):e71704. https://doi.org/10.1371/journal.pone.0071704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Ji F, Jiang Y, Zhao T, Xu C (2018) Correlation analysis of expressions of PTEN and p53 with the value obtained by magnetic resonance spectroscopy and apparent diffusion coefficient in the tumor and the tumor-adjacent area in magnetic resonance imaging for glioblastoma. J BUON 23(2):391–397

    PubMed  Google Scholar 

  20. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  21. Zhang B, Chang K, Ramkissoon S, Tanguturi S, Bi WL, Reardon DA, Ligon KL, Alexander BM, Wen PY, Huang RY (2016) Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro-oncology:now121. https://doi.org/10.1093/neuonc/now121

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Liu X, Xu K, Qian Z, Wang K, Fan X, Li S, Wang Y, Jiang T (2017) MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 28:356–362. https://doi.org/10.1007/s00330-017-4964-z

    Article  PubMed  Google Scholar 

  23. Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S, Wick A, Eidel O, Schlemmer HP, Radbruch A, Debus J, Herold-Mende C, Unterberg A, Jones D, Pfister S, Wick W, von Deimling A, Bendszus M, Capper D (2016) Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281(3):907–918. https://doi.org/10.1148/radiol.2016161382

    Article  PubMed  Google Scholar 

  24. Zinn PO, Singh SK, Kotrotsou A, Abrol S, Thomas G, Mosley J, Elakkad A, Hassan I, Kumar A, Colen RR (2017) Distinct radiomic phenotypes define glioblastoma TP53-PTEN-EGFR mutational landscape. Neurosurgery 64(CN_suppl_1):203–210. https://doi.org/10.1093/neuros/nyx316

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hu LS, Ning S, Eschbacher JM, Baxter LC, Gaw N, Ranjbar S, Plasencia J, Dueck AC, Peng S, Smith KA, Nakaji P, Karis JP, Quarles CC, Wu T, Loftus JC, Jenkins RB, Sicotte H, Kollmeyer TM, O'Neill BP, Elmquist W, Hoxworth JM, Frakes D, Sarkaria J, Swanson KR, Tran NL, Li J, Mitchell JR (2016) Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro-oncology. 19:128–137. https://doi.org/10.1093/neuonc/now135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCann SM, Jiang Y, Fan X, Wang J, Antic T, Prior F, VanderWeele D, Oto A (2016) Quantitative multiparametric MRI features and PTEN expression of peripheral zone prostate cancer: a pilot study. Am J Roentgenol 206(3):559–565. https://doi.org/10.2214/ajr.15.14967

    Article  Google Scholar 

  27. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  28. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006

    Article  CAS  PubMed  Google Scholar 

  29. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O'Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L, Network TR (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G, Haibe-Kains B (2013) mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29(18):2365–2368. https://doi.org/10.1093/bioinformatics/btt383

    Article  CAS  PubMed  Google Scholar 

  31. Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2016) Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol 27:4188–4197. https://doi.org/10.1007/s00330-016-4637-3

    Article  PubMed  PubMed Central  Google Scholar 

  32. Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36(4):1140–1152. https://doi.org/10.1016/j.neubiorev.2012.01.004

    Article  PubMed  Google Scholar 

  33. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  34. Huang d W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. https://doi.org/10.1093/nar/gkn923

    Article  CAS  Google Scholar 

  35. Aerts HJ, Grossmann P, Tan Y, Oxnard GG, Rizvi N, Schwartz LH, Zhao B (2016) Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci Rep 6:33860. https://doi.org/10.1038/srep33860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lehrer M, Bhadra A, Ravikumar V, Chen JY, Wintermark M, Hwang SN, Holder CA, Huang EP, Fevrier-Sullivan B, Freymann JB, Rao A, Group TGPR (2017) Multiple-response regression analysis links magnetic resonance imaging features to de-regulated protein expression and pathway activity in lower grade glioma. Oncoscience 4(5–6):57–66. https://doi.org/10.18632/oncoscience.353

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kini V, Chavez A, Mehta D (2010) A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 285(43):33082–33091. https://doi.org/10.1074/jbc.M110.142034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266(1):177–184. https://doi.org/10.1148/radiol.12120254

    Article  PubMed  Google Scholar 

  39. Yuan F, Zhang Y-H, Kong X-Y, Cai Y-D (2017) Identification of candidate genes related to inflammatory bowel disease using minimum redundancy maximum relevance, incremental feature selection, and the shortest-path approach. Biomed Res Int 2017:1–15. https://doi.org/10.1155/2017/5741948

    Article  CAS  Google Scholar 

  40. Xu Y, Ding Y-X, Ding J, Wu L-Y, Xue Y (2016) Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection. Sci Rep 6(1). https://doi.org/10.1038/srep38318

  41. Mortazavi A, Moattar MH (2016) Robust feature selection from microarray data based on cooperative game theory and qualitative mutual information. Adv Bioinforma 2016:1–16. https://doi.org/10.1155/2016/1058305

    Article  Google Scholar 

  42. Huang MW, Chen CW, Lin WC, Ke SW, Tsai CF (2017) SVM and SVM ensembles in breast Cancer prediction. PLoS One 12(1):e0161501. https://doi.org/10.1371/journal.pone.0161501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 81601452), the Beijing Natural Science Foundation (No. 7174295), the National Key Research and Development Plan (No. 2016YFC0902500) and the National Key Research and Development Program of China (2018YFC0115604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinyan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional research committee (Clinical Research Adoption Committee) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liang, Y., Sun, Z. et al. Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging. Neuroradiology 61, 1229–1237 (2019). https://doi.org/10.1007/s00234-019-02244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-019-02244-7

Keywords

Navigation