Skip to main content

Advertisement

Log in

Pre-operative MRI radiomics model non-invasively predicts key genomic markers and survival in glioblastoma patients

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Although glioblastoma (GBM) is the most common primary brain malignancy, few tools exist to pre-operatively risk-stratify patients by overall survival (OS) or common genetic alterations. We developed an MRI-based radiomics model to identify patients with EGFR amplification, MGMT methylation, GBM subtype, and OS greater than 12 months.

Methods

We retrospectively identified 235 patients with pathologically confirmed GBMs from the Cancer Genome Atlas (88; TCGA) and MD Anderson Cancer Center (147; MDACC). After two neuroradiologists segmented MRI tumor volumes, we extracted first-order and second-order radiomic features (gray-level co-occurrence matrices). We used the Maximum Relevance Minimum Redundancy technique to identify the 100 most relevant features and validated models using leave-one-out-cross-validation and validation on external datasets (i.e., TCGA). Our results were reported as the area under the curve (AUC).

Results

The MDACC patient cohort had significantly higher OS (22 months) than the TCGA dataset (14 months). On both LOOCV and external validation, our radiomics models were able to identify EGFR amplification (all AUCs > 0.83), MGMT methylation (all AUCs > 0.85), GBM subtype (all AUCs > 0.92), and OS (AUC > 0.91 on LOOCV and 0.71 for TCGA validation).

Conclusions

Our robust radiomics pipeline has the potential to pre-operatively discriminate common genetic alterations and identify patients with favorable survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. NeuroOncology 14(Suppl 5):v1-49. https://doi.org/10.1093/neuonc/nos218

    Article  Google Scholar 

  2. Nam JY, de Groot JF (2017) Treatment of glioblastoma. J Oncol Pract 13:629–638. https://doi.org/10.1200/JOP.2017.025536

    Article  PubMed  Google Scholar 

  3. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. https://doi.org/10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  5. Vanderbeek AM, Rahman R, Fell G et al (2018) The clinical trials landscape for glioblastoma: is it adequate to develop new treatments? NeuroOncology 20:1034–1043. https://doi.org/10.1093/neuonc/noy027

    Article  Google Scholar 

  6. Wick W, Osswald M, Wick A, Winkler F (2018) Treatment of glioblastoma in adults. Ther Adv Neurol Disord 11:1756286418790452. https://doi.org/10.1177/1756286418790452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang B, Li X, Li Y et al (2021) Current immunotherapies for glioblastoma multiforme. Front Immunol. https://doi.org/10.3389/fimmu.2020.603911

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colen RR, Rolfo C, Ak M et al (2021) Radiomics analysis for predicting pembrolizumab response in patients with advanced rare cancers. J Immunother Cancer 9:e001752. https://doi.org/10.1136/jitc-2020-001752

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim Y, Cho HH, Kim ST et al (2018) Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Neuroradiology 60:1297–1305. https://doi.org/10.1007/s00234-018-2091-4

    Article  PubMed  Google Scholar 

  11. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  12. Lohmann P, Lerche C, Bauer EK et al (2018) Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep 8:13328. https://doi.org/10.1038/s41598-018-31806-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park YW, Choi D, Park JE et al (2021) Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation. Sci Rep 11:2913. https://doi.org/10.1038/s41598-021-82467-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zinn PO, Majadan B, Sathyan P et al (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE. https://doi.org/10.1371/journal.pone.0025451

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zinn PO, Singh SK, Kotrotsou A et al (2018) A coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin-expressing glioblastoma in patients and xenograft models. Clin Cancer Res 24:6288–6299. https://doi.org/10.1158/1078-0432.CCR-17-3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Habib A, Jovanovich N, Hoppe M et al (2021) MRI-based radiomics and radiogenomics in the management of low-grade gliomas: evaluating the evidence for a paradigm shift. J Clin Med. https://doi.org/10.3390/jcm10071411

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shboul ZA, Alam M, Vidyaratne L et al (2019) Feature-guided deep radiomics for glioblastoma patient survival prediction. Front Neurosci 13:1–17. https://doi.org/10.3389/fnins.2019.00966

    Article  Google Scholar 

  18. Suter Y, Knecht U, Alão M et al (2020) Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging 20:1–13. https://doi.org/10.1186/s40644-020-00329-8

    Article  Google Scholar 

  19. Choi Y, Nam Y, Jang J et al (2021) Radiomics may increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models. Eur Radiol 31:2084–2093. https://doi.org/10.1007/s00330-020-07335-1

    Article  CAS  PubMed  Google Scholar 

  20. Ak M, Toll SA, Hein KZ et al (2021) Evolving role and translation of radiomics and radiogenomics in adult and pediatric neuro-oncology. Am J Neuroradiol. https://doi.org/10.3174/ajnr.A7297

    Article  PubMed  Google Scholar 

  21. Gutman DA, Cooper LAD, Hwang SN et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267:560–569. https://doi.org/10.1148/radiol.13120118

    Article  PubMed  PubMed Central  Google Scholar 

  22. Elshafeey N, Kotrotsou A, Hassan A et al (2019) Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat Commun 10:3170. https://doi.org/10.1038/s41467-019-11007-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bossuyt PM, Reitsma JB, Bruns DE et al (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology 277:826–832. https://doi.org/10.1148/radiol.2015151516

    Article  PubMed  Google Scholar 

  24. Behnan J, Finocchiaro G, Hanna G (2019) The landscape of the mesenchymal signature in brain tumours. Brain 142:847–866. https://doi.org/10.1093/brain/awz044

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weinstein JN, Collisson EA, Mills GB et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zinn PO, Singh SK, Kotrotsou A et al (2017) Distinct radiomic phenotypes define glioblastoma TP53-PTEN-EGFR mutational landscape. Neurosurgery 64:203–210. https://doi.org/10.1093/neuros/nyx316

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pichon E, Tannenbaum A, Kikinis R (2004) A statistically based flow for image segmentation. Med Image Anal 8:267–274. https://doi.org/10.1016/j.media.2004.06.006

    Article  PubMed  Google Scholar 

  28. Gering DT, Nabavi A, Kikinis R et al (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. Journal of magnetic resonance imaging : JMRI 13:967–975. https://doi.org/10.1002/jmri.1139

    Article  CAS  PubMed  Google Scholar 

  29. Archip N, Jolesz FA, Warfield SK (2007) A validation framework for brain tumor segmentation. Acad Radiol 14:1242–1251. https://doi.org/10.1016/j.acra.2007.05.025

    Article  PubMed  Google Scholar 

  30. Nyúl LG, Udupa JK, Zhang X (2000) New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 19:143–150. https://doi.org/10.1109/42.836373

    Article  PubMed  Google Scholar 

  31. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3:185–205. https://doi.org/10.1142/s0219720005001004

    Article  CAS  PubMed  Google Scholar 

  32. Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. MIT Press, Cambridge

    Google Scholar 

  33. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  34. Westphal M, Maire CL, Lamszus K (2017) EGFR as a target for glioblastoma treatment: an unfulfilled promise. CNS Drugs 31:723–735. https://doi.org/10.1007/s40263-017-0456-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei J, Yang G, Hao X et al (2019) A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. Eur Radiol 29:877–888. https://doi.org/10.1007/s00330-018-5575-z

    Article  PubMed  Google Scholar 

  36. Le NQK, Hung TNK, Do DT et al (2021) Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI. Comput Biol Med 132:104320. https://doi.org/10.1016/j.compbiomed.2021.104320

    Article  CAS  PubMed  Google Scholar 

  37. Ammari S, Sallé de Chou R, Balleyguier C et al (2021) A predictive clinical-radiomics nomogram for survival prediction of glioblastoma using MRI. Diagnostics 11:1–12. https://doi.org/10.3390/diagnostics11112043

    Article  CAS  Google Scholar 

  38. Wang B, Zhang S, Wu X et al (2021) Multiple survival outcome prediction of glioblastoma patients based on multiparametric MRI. Front Oncol 11:1–12. https://doi.org/10.3389/fonc.2021.778627

    Article  Google Scholar 

  39. Pasquini L, Di Napoli A, Napolitano A et al (2021) Glioblastoma radiomics to predict survival: Diffusion characteristics of surrounding nonenhancing tissue to select patients for extensive resection. J Neuroimaging 31:1192–1200. https://doi.org/10.1111/jon.12903

    Article  PubMed  Google Scholar 

  40. Douglas Heaven W Google ’ s medical AI was super accurate in a lab . Real life was a di ff erent story . MIT Technology Review April 20,:

Download references

Author information

Authors and Affiliations

Authors

Contributions

MA., AE, AK, SZ, NE, KV, KA, helped with data collection and segmentation. MP, ZCG, RRC, POZ, PM helped with analysis of data and interpretation of results. MP, ZCG, RRC, POZ wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to P. O. Zinn.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest or grant support for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 516 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pease, M., Gersey, Z.C., Ak, M. et al. Pre-operative MRI radiomics model non-invasively predicts key genomic markers and survival in glioblastoma patients. J Neurooncol 160, 253–263 (2022). https://doi.org/10.1007/s11060-022-04150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04150-0

Keywords

Navigation