Skip to main content

Advertisement

Log in

Performance prediction, numerical and experimental investigation to characterize the flow field and thermal behavior of a cryogenic turboexpander

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Radial inflow turbine and nozzle among the other components of the cryogenic turboexpander has a significant effect on the efficiency of the system. This study proposes an effective one-dimensional design approach of a radial turbine by introducing different loss correlations. The methodology also describes the effect of non-dimensional design variables on the performance of the turbine. These variables (blade speed ratio, pressure ratio, hub and shroud to turbine inlet radius ratio) undergo artificial intelligence-based model to predict their optimal range for better efficiency and power output of the turbine. Based on these optimal ranges, two turbine and nozzle models are generated. The results of the optimized configuration show that the turbine total-to-static efficiency and power output are higher by 4% and 18.9% respectively as compared to the existing literature. Thereafter, the three-dimensional computational fluid dynamics (CFD) analysis is carried out to visualize the fluid flow and thermal characteristics at different inlet temperatures in the flow passage using ANSYS CFX®. The study also focuses to identify the flow separation zone, tip leakage flow, vortex formation, secondary losses and its reasons at different spans of the turbine. An experimental platform is also established to validate the CFD results of a case study. The experimental results show that the mass flow rate and rotational speed has major effect on temperature drop and isentropic efficiency of the turboexpander. The study highlights the importance of the design methodology, the estimation capability of artificial intelligence models, the experimental techniques and benchmarking model for numerical analysis at different cryogenic temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

b :

Blade height \(\left (m\right )\)

b t :

Nozzle height (m)

C :

Absolute velocity \(\left (m/s\right )\)

C 0 :

Spouting velocity \(\left (m/s\right )\)

C h n :

Chord length \(\left (m\right )\)

C m t :

Meridional velocity at throat of the nozzle (m/s)

\(C_{{~}_{\theta t}}\) :

Tangential velocity at throat of the nozzle (m/s)

c :

Turbine blade chord \(\left (m\right )\)

D :

Turbine diameter \(\left (m\right )\)

D n :

Nozzle ring diameter \(\left (m\right )\)

D h :

Mean passage hydraulic diameter \(\left (m\right )\)

D t :

Nozzle throat circle diameter (m)

d :

Diameter \(\left (m\right )\)

d s :

Specific diameter

h :

Enthalpy \(\left (kJ/kg\right )\)

k :

Discharge coefficient

k x r :

Cross coupling coefficient

k p :

Constant

L :

Axial length \(\left (m\right )\)

L t :

Total loss

L h :

Mean passage hydraulic length \(\left (m\right )\)

M :

Mach number

\(\overset {.}{m}\) :

Mass flow rate (kg/s)

n s :

Specific speed

P :

Power \(\left (kW\right )\)

P n :

Blade pitch length \(\left (m\right )\)

p :

Pressure \(\left (Pa\right )\)

Q :

Volume flow rate \(\left (m^{3}/s\right )\)

R :

Turbine radius \(\left (m\right )\)

R h :

Hub radius \(\left (m\right )\)

R s :

Shroud radius \(\left (m\right )\)

r :

Radius \(\left (m\right )\)

r p :

Pressure ratio

s :

Meridional streamlength \(\left (m\right )\),

t :

Blade thickness\(\left (m\right )\)

U :

Blade speed \(\left (m/s\right )\)

v s :

Blade speed ratio

W :

Relative velocity \(\left (m/s\right )\)

W t :

Throat width\(\left (m\right )\)

Z :

Number of blades

Z r :

Rotor axial length \(\left (m\right )\)

ANFIS :

Adaptive neuro-fuzzy inference system

ANN :

Artificial neural network

CFD :

Computational fluid dynamics

MAE :

Mean absolute error

MLP :

Multi-layer perceptron

ORC :

Organic Rankine cycle

PFHX :

Plate-fin heat exchanger

RMSE :

Root mean squared error

TF :

Transfer function

α :

Absolute velocity angle (degree),

α t :

Nozzle throat angle (degree),

β :

Absolute flow angle (degree),

β 2, opt :

Incidence angle (degree)

ε x :

Axial clearance (m)

ε r :

Radial clearance (m)

γ :

Specific heat ratio

η ts :

Total-to-static efficiency

ρ :

Density \(\left (kg/m^{3}\right )\)

η i s :

Isentropic efficiency

ψ z :

Zweifel number

ψ :

Stage head coefficient

λ :

Turbine outlet to inlet radius ratio

λ s :

Stagger angle (degree)

χ :

Ratio of absolute meridional velocity

ϕ :

Flow coefficient

ζ :

Hub ratio

Θ :

Rotor meridional velocity coefficient

ω :

Rotational speed \(\left (rpm\right )\)

BL :

Blade loading loss

C l :

Clearance loss

h :

Hub

I :

Incidence loss

m :

Meridional

n :

Nozzle

o :

Total

r :

Radial

rel :

Relative

s :

Shroud, Isentropic

TEL :

Trailing edge loss

t :

Throat

tip :

Tip (turbine exit)

x :

Axial

0:

Stagnation state

1:

Nozzle inlet

2:

Turbine inlet

3:

Turbine outlet

𝜃 :

Tangential

References

  1. Gavroglu K, Goudaroulis Y (1988) Heike kamerlingh onnes’ researches at leiden and their methodological implications. Studs History Philos Sci Part A 19(2):243–274

    Article  Google Scholar 

  2. Linde H (1995) Aus der geschichte der tieftemperaturverfahrenstechnik. KI Luft-und Kaltetechnik 31(9):419–424

    Google Scholar 

  3. Reif-Acherman S (2009) Several motivations, improved procedures, and different contexts: the first liquefactions of helium around the world. Int J Refrig 32(5):738–762

    Article  Google Scholar 

  4. Boyce MP (2012) Gas turbine engineering handbook, ch. 8 - radial-inflow turbines, pp 357–383. Gulf Professional

  5. Carter C, Guillot S, Ng W, Copenhaver W (2001) Aerodynamic performance of a high-turning compressor stator with flow control. In: 37th Joint propulsion conference and exhibit, p 3973

  6. McAuliffe BR, Sjolander SA (2004) Active flow control using steady blowing for a low pressure turbine cascade. In: ASME turbo expo 2004: power for land, sea, and air. American Society of Mechanical Engineers, pp 1223–1235

  7. Whitfield A, Baines N (1976) A general computer solution for radial and mixed flow turbomachine performance prediction. Int J Mech Sci 18(4):179–184

    Article  Google Scholar 

  8. Harvey NW, Rose MG, Taylor MD, Shahpar S, Hartland J, Gregory-Smith DG (2000) Non-axisymmetric turbine end wall design: part i-three-dimensional linear design system. In: Journal of turbomachinery, vol 122. American Society of Mechanical Engineers, pp 278–285

  9. Suhrmann JF, Peitsch D, Gugau M, Heuer T, Tomm U (2010) Validation and development of loss models for small size radial turbines. In: ASME turbo expo 2010: power for land, sea, and air. American Society of Mechanical Engineers, pp 1937– 1949

  10. Takao M, Thakker A, Abdulhadi R, Setoguchi T (2006) Effect of blade profile on the performance of a large-scale wells turbine for wave-energy conversion. Int J Sustain Energy 25(01):53–61

    Article  Google Scholar 

  11. Acharya S, Mahmood G (2006) Turbine blade aerodynamics. Gas Turb Handbook 1:364–380

    Google Scholar 

  12. Denton JD (1993) Loss mechanisms in turbomachines. In: ASME 1993 international gas turbine and aeroengine congress and exposition. American Society of Mechanical Engineers, pp V002T14A001–V002T14A001

  13. Benson RS (1970) A review of methods for assessing loss coefficients in radial gas turbines. Int J Mech Sci 10:905–932

    Article  Google Scholar 

  14. Costall A, Hernandez AG, Newton P, Martinez-Botas R (2015) Design methodology for radial turbo expanders in mobile organic Rankine cycle applications. Appl Energy 157:729–743

    Article  Google Scholar 

  15. Ventura CA, Jacobs PA, Rowlands AS, Petrie-Repar P, Sauret E (2012) Preliminary design and performance estimation of radial inflow turbines: an automated approach. J Fluids Eng 134(3):031102

    Article  Google Scholar 

  16. Joseph J, Subramanian S, Vigney K, Prasad B, Biswas D (2018) Thermodynamic wetness loss calculation in nozzle and turbine cascade: nucleating steam flow. Heat Mass Transf 54(8):2521–2531

    Article  Google Scholar 

  17. Khalil KM, Mahmoud S, Al-Dadah R, Ennil AB (2017) Investigate a hybrid open-Rankine cycle small-scale axial nitrogen expander by a camber line control point parameterization optimization technique. Appl Therm Eng 127:823–836

    Article  Google Scholar 

  18. Ghorbanian K, Gholamrezaei M (2009) An artificial neural network approach to compressor performance prediction. Appl Energy 86(7-8):1210–1221

    Article  Google Scholar 

  19. Jovanovic RZ, Bozic IO (2018) Feedforward neural network and ANFIS-based approaches to forecasting the off-cam energy characteristics of Kaplan turbine. Neural Comput Applic 30(8):2569–2579

    Article  Google Scholar 

  20. Asil AG, Pour AN, Mirzaei S (2018) Reliable prediction of heat transfer coefficient in three-phase bubble column reactor via adaptive neuro-fuzzy inference system and regularization network. Heat Mass Transf 54 (10):2975–2986

    Article  Google Scholar 

  21. Bartolini C, Caresana F, Comodi G, Pelagalli L, Renzi M, Vagni S (2011) Application of artificial neural networks to micro gas turbines. Energy Convers Manag 52(1):781–788

    Article  Google Scholar 

  22. Kumar M, Panda D, Behera SK, Sahoo R (2019) Experimental investigation and performance prediction of a cryogenic turboexpander using artificial intelligence techniques. Appl Thermal Eng, 114273

    Article  Google Scholar 

  23. Hongli Z, Yu H, Liang C (2009) Experimental study on a small Brayton air refrigerator under- 120 C. Appl Therm Eng 29(8–9):1702–1706

    Article  Google Scholar 

  24. Harinck J, Pasquale D, Pecnik R, van Buijtenen J, Colonna P (2013) Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. Proc Institut Mech Eng Part A: J Power Energy 227(6):637–645

    Article  Google Scholar 

  25. Yang S, Chen S, Chen X, Zhang X, Hou Y (2016) Study on the coupling performance of a turboexpander compressor applied in cryogenic reverse Brayton air refrigerator. Energy Convers Manag 122:386–399

    Article  Google Scholar 

  26. Nithesh K, Chatterjee D (2016) Numerical prediction of the performance of radial inflow turbine designed for ocean thermal energy conversion system. Appl Energy 167:1–16

    Article  Google Scholar 

  27. Chang H-M, Ryu KN, Baik JH (2018) Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator. Cryogenics 91:68–76

    Article  Google Scholar 

  28. Streit J, Razani A (2013) Thermodynamic optimization of reverse Brayton cycles of different configurations for cryogenic applications. Int J Refrig 36(5):1529–1544

    Article  Google Scholar 

  29. Ke C, Xiong L, Peng N, Dong B, Li K, Li J, Liu L (2017) Numerical and experimental study of the performance effects of varying vaneless space in high-speed micro turbine stators. Cryogenics 88:10–16

    Article  Google Scholar 

  30. Aungier RH (2006) Aerodynamic design and performance analysis of exhaust diffusers. ASME Press

  31. Li Y, Ren X-d (2016) Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design. Appl Therm Eng 96:547–554

    Article  Google Scholar 

  32. Moustapha H, Zelesky MF, Baines NC, Japikse D (2003) Axial and radial turbines. Concepts NREC White river junction, VT, vol 2

  33. Ghosh SK (2008) Experimental and computational studies on cryogenic turboexpander. National Institute of Technology Rourkela, PhD thesis

    Google Scholar 

  34. Baines N (1998) A meanline prediction method for radial turbine efficiency. In: IMECHE conference transactions

  35. Rodgers C (1987) Mainline performance prediction for radial inflow turbine in small high pressure ratio turbine, tech rep. Von Karman Institute Lecture Series

  36. Kun L, Sentz R (1985) High efficiency expansion turbines in air separation and liquefaction plants. In: International conference on production and purification of coal gas & separation of air, Beijing, pp 1–21

  37. Ariff M, Salim SM, Cheah SC (2009) Wall y+ approach for dealing with turbulent flow over a surface mounted cube: part 1-low Reynolds number. In: Seventh international conference on CFD in the minerals and process industries, pp 1–6

  38. Ansys C (2013) Ansys CFX solver modeling guide, release 15.0

  39. Lei Q, Zhengping Z, Huoxing L, Wei L (2010) Upstream wake–secondary flow interactions in the endwall region of high-loaded turbines. Comput Fluids 39(9):1575–1584

    Article  Google Scholar 

  40. Kumar M, Sahoo R, Behera S (2018) Design and numerical investigation to visualize the fluid flow and thermal characteristics of non-axisymmetric convergent nozzle. Engineering Science and Technology, an International Journal

  41. Taremi F (2013) Endwall flows in transonic turbine cascades. Carleton University, PhD thesis

    Book  Google Scholar 

  42. Alur S (2012) Experimental studies on plate fin heat exchangers. PhD thesis, National Institute of Technology, Rourkela

  43. Zangeneh M, Goto A, Harada H (1998) On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers. J Turbomach 120(4):723–735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Ethics declarations

Conflict of interests

The authors declared that there is no conflict of interest to any person or organisation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Panda, D., Sahoo, R.K. et al. Performance prediction, numerical and experimental investigation to characterize the flow field and thermal behavior of a cryogenic turboexpander. Heat Mass Transfer 56, 1015–1036 (2020). https://doi.org/10.1007/s00231-019-02777-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02777-w

Keywords

Navigation