Skip to main content

Advertisement

Log in

A methodology for the performance prediction: flow field and thermal analysis of a helium turboexpander

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Helium liquefaction systems are widely used in nuclear fission, superconductivity, space industries, and other scientific instruments. However, the efficiency of these systems is quite low due to the cryogenic operating temperature. In this regard, the one-dimensional design methodology of the helium turbine and nozzle (hereafter, renowned as turboexpander) is important to increase the efficiency of the system. This paper demonstrates the sensitivity analysis and optimal range of non-dimensional design variables on which the radial inflow turbine has maximum efficiency, minimum losses, and maximum power output using artificial intelligence techniques. On this basis, three turboexpander models are developed within the optimal range of predicted non-dimensional variables. After that, a comparative numerical study is carried out to highlight the flow field and thermal characteristics of helium fluid. The standard two equations \(k{-}\omega \) SST model is used to solve the three-dimensional incompressible flow inside the computational domain. The numerical results are validated with the available experimental data from the existing literature. The variation of Mach number, Reynolds number, Prandtl number, static entropy, static enthalpy, temperature, and pressure inside the turboexpander is significantly affected by blade profile which is enormously affected by the design methodology. The study also demonstrates the flow separation region, vortex formation, tip leakage flow, secondary losses, and its reasons along with the spanwise location. The results highlight the importance of the design methodology, sensitivity analysis, the prediction capability of the artificial intelligence network, numerical methodology, and development of the helium turboexpander prototype models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

b :

Blade height \(\left( \mathrm{m}\right) \)

\(b_\mathrm{t}\) :

Nozzle height \((\mathrm{m})\)

C :

Absolute velocity \(\left( \mathrm{m}/\mathrm{s}\right) \)

\(C_{0}\) :

Spouting velocity \(\left( \mathrm{m}/\mathrm{s}\right) \)

\(\mathrm{Ch}_\mathrm{n}\) :

Chord length \(\left( \mathrm{m}\right) \)

\(C_\mathrm{mt}\) :

Nozzle throat velocity (Meridional component) \((\mathrm{m})\)

\(C_{_{\theta t}}\) :

Nozzle throat velocity (Tangential component) \((\mathrm{m})\)

\(c_\mathrm{p}\) :

Specific heat capacity \(\left( \mathrm{J}/\mathrm{kg\,K}\right) \)

D :

Turbine diameter ratio

\(D_{\mathrm{h}}\) :

Hydraulic diameter \(\left( \mathrm{m}\right) \)

\(D_{\mathrm{n}}\) :

Diameter of nozzle ring \(\left( \mathrm{m}\right) \)

\(D_{\mathrm{t}}\) :

Nozzle throat circle diameter \((\mathrm{m})\)

\(D_{i}\left( Y\right) \) :

First-order variance

\(D_{ij}\left( Y\right) \) :

Second-order variance

\(d_{\mathrm{s}}\) :

Specific diameter

h :

Enthalpy \(\left( \mathrm{kJ}/\mathrm{kg}\right) \)

\(k_{0}\) :

Thermal conductivity of fluid \(\left( \mathrm{W}/\mathrm{mK}\right) \)

\(L_{\mathrm{t}}\) :

Total loss

\(\overset{.}{m}\) :

Mass flow rate \((\mathrm{kg}/\mathrm{s})\)

\(n_{\mathrm{s}}\) :

Specific speed

P :

Power \(\left( \mathrm{kW}\right) \)

p :

Pressure \(\left( \mathrm{Pa}\right) \)

\(R_{2}\) :

Turbine inlet radius \(\left( \mathrm{m}\right) \)

\(R_{\mathrm{h}}\) :

Hub radius \(\left( \mathrm{m}\right) \)

\(R_{\mathrm{s}}\) :

Shroud radius \(\left( \mathrm{m}\right) \)

\(r_{\mathrm{p}}\) :

Pressure ratio

\(S_{\mathrm{i}}\) :

First-order sensitivity index

U :

Mean flow velocity \(\left( \mathrm{m}/\mathrm{s}\right) \)

u :

Blade speed \(\left( \mathrm{m}/\mathrm{s}\right) \)

\(\mathrm{Var}\left( Y\right) \) :

Total variance of the output

\(v_{\mathrm{s}}\) :

Velocity ratio

W :

Relative velocity \(\left( \mathrm{m}/\mathrm{s}\right) \)

\(W_{\mathrm{t}}\) :

Throat width \(\left( \mathrm{m}\right) \)

X :

Parameters

\(x_{\mathrm{i}}\) :

Number of inputs

Y :

Target function

Z :

Number of blades

\(Z_{\mathrm{r}}\) :

Rotor axial length \(\left( \mathrm{m}\right) \)

\(\alpha \) :

Absolute flow angle \((\circ )\)

\(\beta \) :

Relative flow angle \((\circ )\)

\(\zeta _{\mathrm{b}}\) :

Back friction

\(\zeta _{\mathrm{l}}\) :

Leakage loss

\(\varepsilon _{\mathrm{x}}\) :

Axial clearance \((\mathrm{m})\)

\(\varepsilon _{\mathrm{r}}\) :

Radial clearance \((\mathrm{m})\)

\(\lambda \) :

Ratio of rotor outlet to inlet

\(\mu \) :

Coefficient of viscosity \(\left( \mathrm{Pa}\,\mathrm{s}\right) \)

\(\Omega \) :

Degree of reaction

\(\rho \) :

Density \(\mathrm{kg}/\mathrm{m}^{3}\)

\(\psi _{\mathrm{z}}\) :

Zweifel number

\(\phi \) :

Flow coefficient

\(\psi \) :

Stage loading coefficient

\(\chi \) :

Absolute meridional velocity

\(\eta _{\mathrm{is}}\) :

Isentropic efficiency

\(\omega \) :

Rotational speed \(\left( \mathrm{rpm}\right) \)

1:

Nozzle inlet

2:

Turbine inlet

3:

Rotor outlet

\(\mathrm{h}\) :

Hub

\(\mathrm{m}\) :

Meridional

\(\mathrm{n}\) :

Nozzle

\(\mathrm{r}\) :

Radial

\(\mathrm{s}\) :

Shroud

\(\mathrm{t}\) :

Throat

\(\mathrm{z}\) :

Axial

\(\theta \) :

Tangential

ANFIS:

Adaptive neuro-fuzzy inference system

ANN:

Artificial neural network

GA:

Genetic algorithms

HEX:

Heat exchanger

MAE:

Mean absolute error

MF:

Membership function

MLP:

Multilayer perceptron

ORC:

Organic Rankine cycle

PS:

Pressure surface

RMSE:

Root-mean-squared error

SS:

Suction surface

SST:

Shear stress transport

TF:

Transfer function

TKE:

Turbulence kinetic energy

References

  1. Mito T, Sagara A, Imagawa S, Yamada S, Takahata K, Yanagi N, Chikaraishi H, Maekawa R, Iwamoto A, Hamaguchi S et al (2006) Applied superconductivity and cryogenic research activities in NIFS. Fusion Eng Des 81(20–22):2389–2400

    Article  Google Scholar 

  2. Clavel F, Alamir M, Bonnay P, Barraud A, Bornard G, Deschildre C (2011) Multivariable control architecture for a cryogenic test facility under high pulsed loads: model derivation, control design and experimental validation. J Process Control 21(7):1030–1039

    Article  Google Scholar 

  3. Hall C, Dixon SL (2013) Fluid mechanics and thermodynamics of turbomachinery. Butterworth-Heinemann, Oxford

    Google Scholar 

  4. Wilson DG, Korakianitis T (2014) The design of high-efficiency turbomachinery and gas turbines. MIT Press, Cambridge

    Book  Google Scholar 

  5. Meroni A, Robertson M, Martinez-Botas R, Haglind F (2018) A methodology for the preliminary design and performance prediction of high-pressure ratio radial-inflow turbines. Energy 164:1062–1078

    Article  Google Scholar 

  6. Da Lio L, Manente G, Lazzaretto A (2017) A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems. Appl Energy 205:187–209

    Article  Google Scholar 

  7. Aungier RH (2006) Aerodynamic design and performance analysis of exhaust diffusers. ASME Press, New York

    Book  Google Scholar 

  8. Ino N, Machida A, Ttsugawa K, Arai Y, Matsuki M, Hashimoto H, Yasuda A (1992) Development of high expansion ratio helium turboexpander. In: Advances in cryogenic engineering. Springer, New York, pp 835–844

  9. Ghosh SK (2008) Experimental and computational studies on cryogenic turboexpander. Ph.D. thesis, National Institute of Technology Rourkela

  10. Choudhury BK (2013) Design and construction of turboexpander based nitrogen liquefier. Ph.D. thesis

  11. Larjola J (1988) ORC power plant based on high speed technology. In: Conference on high speed technology. Lappeenranta, Finland, pp 21–24

  12. Kumar M, Panda D, Behera SK, Sahoo RK (2019) Experimental investigation and performance prediction of a cryogenic turboexpander using artificial intelligence techniques. In: Applied thermal engineering, No. 114273

  13. Sam AA, Mondal J, Ghosh P (2017) Effect of rotation on the flow behaviour in a high-speed cryogenic microturbine used in helium applications. Int J Refrig 81:111–122

    Article  Google Scholar 

  14. Pei G, Li J, Li Y, Wang D, Ji J (2011) Construction and dynamic test of a small-scale organic Rankine cycle. Energy 36(5):3215–3223

    Article  Google Scholar 

  15. Li X, Lv C, Yang S, Li J, Deng B, Li Q (2019) Preliminary design and performance analysis of a radial inflow turbine for a large-scale helium cryogenic system. Energy 167:106–116

    Article  Google Scholar 

  16. Islamoglu Y, Kurt A, Parmaksizoglu C (2005) Performance prediction for non-adiabatic capillary tube suction line heat exchanger: an artificial neural network approach. Energy Convers Manag 46(2):223–232

    Article  Google Scholar 

  17. Ghorbanian K, Soltani M, Morad M, Ashjaee M (2005) Velocity field reconstruction in the mixing region of swirl sprays using general regression neural network. J Fluids Eng 127(1):14–23

    Article  Google Scholar 

  18. Joly R, Ogaji S, Singh R, Probert S (2004) Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine. Appl Energy 78(4):397–418

    Article  Google Scholar 

  19. Ghorbanian K, Gholamrezaei M (2009) An artificial neural network approach to compressor performance prediction. Appl Energy 86(7–8):1210–1221

    Article  Google Scholar 

  20. Moraal P, Kolmanovsky I (1999) Turbocharger modeling for automotive control applications. Technical report, SAE technical paper

  21. Chang Y-Z, Hung K-T, Shih H-Y (2008) Optimizing the swiss-roll recuperator of an innovative micro gas turbine by a surrogate neural network and the multi-objective direct algorithm. In: ASME Turbo Expo 2008: power for land, sea, and air. American Society of Mechanical Engineers, pp 713–721

  22. Yu Y, Chen L, Sun F, Wu C (2007) Neural-network based analysis and prediction of a compressor’s characteristic performance map. Appl Energy 84(1):48–55

    Article  Google Scholar 

  23. Fast M, Assadi M, De S (2009) Development and multi-utility of an ANN model for an industrial gas turbine. Appl Energy 86(1):9–17

    Article  Google Scholar 

  24. Bartolini C, Caresana F, Comodi G, Pelagalli L, Renzi M, Vagni S (2011) Application of artificial neural networks to micro gas turbines. Energy Convers Manag 52(1):781–788

    Article  Google Scholar 

  25. Mesbahi E, Assadi M, Torisson T, Lindquist T (2001) A unique correction technique for evaporative gas turbine (evgt) arameters. In: ASME Turbo Expo 2001: power for land, sea, and air. American Society of Mechanical Engineers, pp V004T04A001–V004T04A001

  26. Kong C, Ki J (2007) Components map generation of gas turbine engine using genetic algorithms and engine performance Deck data. J Eng Gas Turbines Power 129(2):312–317

    Article  MathSciNet  Google Scholar 

  27. Kong C, Kho S, Ki J (2004) Component map generation of a gas turbine using genetic algorithms. In: ASME Turbo Expo 2004: power for land, sea, and air. American Society of Mechanical Engineers, pp 469–474

  28. Pasquale D, Ghidoni A, Rebay S (2013) Shape optimization of an organic Rankine cycle radial turbine nozzle. J Eng Gas Turbines Power 135(4):042308

    Article  Google Scholar 

  29. Harinck J, Pasquale D, Pecnik R, van Buijtenen J, Colonna P (2013) Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. Proc Inst Mech Eng Part A J Power Energy 227(6):637–645

    Article  Google Scholar 

  30. Sam AA, Ghosh P (2017) Flow field analysis of high-speed helium turboexpander for cryogenic refrigeration and liquefaction cycles. Cryogenics 82:1–14

    Article  Google Scholar 

  31. Renu K, Bora NV (2014) Design of helium cryogenic turboexpander. Int J Sci Res Dev 1(11):2321-0613

    Google Scholar 

  32. Li S, Krivitzky EM, Qiu X (2016) Meanline modeling of a radial-inflow turbine nozzle with supersonic expansion. In: ASME Turbo Expo 2016: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, pp V02DT42A036–V02DT42A036

  33. Sauret E (2012) Open design of high pressure ratio radial-inflow turbine for academic validation. In: ASME 2012 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp 3183–3197

  34. Li Y, Ren X-D (2016) Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design. Appl Thermal Eng 96:547–554

    Article  Google Scholar 

  35. Yang H, Wen J, Wang S, Li Y, Tu J, Cai W (2017) Sobol sensitivity analysis for governing variables in design of a plate-fin heat exchanger with serrated fins. Int J Heat Mass Transf 115:871–881

    Article  Google Scholar 

  36. Wang X, Zou Z (2019) Uncertainty analysis of impact of geometric variations on turbine blade performance. Energy 176:67–80

    Article  Google Scholar 

  37. Jang J-S, Sun C-T (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3):378–406

    Article  Google Scholar 

  38. Schlechtingen M, Santos IF, Achiche S (2013) Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Trans Sustain Energy 4(3):671–679

    Article  Google Scholar 

  39. Chen Z, Choi Y-D (2015) Influence of air supply on the performance and internal flow characteristics of a cross flow turbine. Renew Energy 79:103–110

    Article  Google Scholar 

  40. Dong B, Xu G, Li T, Quan Y, Zhai L, Wen J (2018) Numerical prediction of velocity coefficient for a radial-inflow turbine stator using R123 as working fluid. Appl Thermal Eng 130:1256–1265

    Article  Google Scholar 

  41. Lei Q, Zhengping Z, Huoxing L, Wei L (2010) Upstream wake-secondary flow interactions in the endwall region of high-loaded turbines. Comput Fluids 39(9):1575–1584

    Article  Google Scholar 

  42. Kumar M, Sahoo R, Behera S (2018) Design and numerical investigation to visualize the fluid flow and thermal characteristics of non-axisymmetric convergent nozzle. Int J Eng Sci Technol 22(1):294–312

    Article  Google Scholar 

  43. Lakshminarayana B (1995) Fluid dynamics and heat transfer of turbomachinery. Wiley, New York

    Book  Google Scholar 

  44. Chakravarty A (2011) Recent developments in high speed cryogenic turboexpanders at BARC, Mumbai. In: Asian conference on applied superconductivity and cryogenics, New Delhi

  45. Zangeneh M, Goto A, Harada H (1998) On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers. J Turbomach 120(4):723–735

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank to the Board of Research in Nuclear Sciences (BRNS) (Grant No. 39/23/2015-BRNS/39001), Ministry of Human Resource Development (MHRD), Government of India, and National Institute of Technology, Rourkela for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest to any person or organization.

Additional information

Technical Editor: Erick de Moraes Franklin, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Panda, D., Kumar, A. et al. A methodology for the performance prediction: flow field and thermal analysis of a helium turboexpander. J Braz. Soc. Mech. Sci. Eng. 41, 484 (2019). https://doi.org/10.1007/s40430-019-1989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1989-z

Keywords

Navigation