Skip to main content
Log in

Forming method of micro heat pipe with compound structure of sintered wick on grooved substrate

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Micro heat pipes (MHPs) with excellent heat transfer performance have been the ideal radiating components to meet increasingly higher requirements posed by high heat-flux products. Based on MHPs’ working principle, this study deduced capillary limit of a novel MHP with compound structure of sintered wick on grooved substrate, and probed into its forming mechanism: first, high-speed oil-filled spinning was applied to fabricating micro grooves, with optimal spinning and drawing speeds determined; then a mini-type vibration machine was used to help fill copper powders fast and uniformly, with appropriate sintering temperature and time fixed; the manufacturing method that integrates vacuum-pumping–cold-welding with secondary-degassing–cold-welding to increase vacuumizing efficiency. The results of experiments on its heat transfer performance show that the MHPs with sintered-wick-on-grooved-substrate structure fabricated through the proposed forming method can not only acquire much better heat transfer performance, but have advantages such as higher productivity and lower cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Zaghdoudi MC, Maalej S, Mansouri J et al (2011) Flat miniature heat pipes for electronics cooling: state of the art, experimental and theoretical analysis. World Acad Sci Eng Technol 51(3):879–902

    Google Scholar 

  2. Vasiliev LL (2006) Micro and miniature heat pipes—electronic component coolers. Appl Therm Eng 33(8):105–113

    MathSciNet  Google Scholar 

  3. Zhu DS, Lei J, Wang CH et al (2009) Research progress in electronic component heat dissipation using thermoelectric cooling technology. Microelectronics 39(1):94–100 (in Chinese)

    Google Scholar 

  4. Choi JH, Sung BH, Yoo JH et al (2012) Enhanced miniature loop heat pipe cooling system for high power density electronics. J Therm Sci Eng Appl 4(2):1–7

    Article  Google Scholar 

  5. Zhang H, Yang J, Zhuang J (2009) Application of heat pipe in energy conservation technology. Chemical Industry Press, Beijing, pp 1–10 (in Chinese)

    Google Scholar 

  6. Wang H, Tang Y, Yu JJ (2010) Recent advances of the phase change micro-channel cooling structure. J Mech Eng 46(24):101–106 (in Chinese)

    Article  MATH  Google Scholar 

  7. Suman B (2008) Effects of a surface-tension gradient on the performance of a micro-grooved heat pipe: an analytical study. Microfluid Nanofluid 5:655–667

    Article  Google Scholar 

  8. Oh KH, Lim H, Im H et al (2009) Manufacturing process of copper microgrooves utilizing a novel optical fiber-based laser-induced etching technique. Int J Precis Eng Manuf 10(3):155–160

    Article  Google Scholar 

  9. Xin GM, Cui KH, Zou Y et al (2009) Development of sintered Ni–Cu wicks for loop heat pipes. Sci China Ser E Technol Sci 52(6):1607–1612

    Article  Google Scholar 

  10. Zhu WF, Chen YP, Zhang CB et al (2009) Flowing and heat transfer characteristics of heat pipe with axially swallow-tailed microgrooves. J Astronaut 30(6):2380–2386 (in Chinese)

    Google Scholar 

  11. Chen YP, Zhu WF, Zhang CB et al (2010) Thermal characteristics of heat pipe with axially swallow-tailed microgrooves. Chin J Chem Eng 18(2):185–193

    Article  MathSciNet  Google Scholar 

  12. Lin YJ, Hwang KS (2009) Effects of particle size and particle size distribution on heat dissipation of heat pipes with sintered porous wicks. Metall Mater Trans A 40A(9):2071–2078

    Article  Google Scholar 

  13. Li Y, Chen CY, Jie ZW et al (2012) Effect of copper particle size on heat transfer performance of sintered heat pipe. J S China Univ Technol (Nat Sci Ed) 40(3):156–161 (in Chinese)

    Google Scholar 

  14. Li Y, He HF, Zeng ZX (2013) Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick. Appl Therm Eng 50(1):342–351

    Article  Google Scholar 

  15. Li XB, Wang JJ, Hu QM et al (2013) Experimental and theoretical research on capillary limit of micro heat pipe with compound structure of sintered wick on trapezium-grooved substrate. Heat Mass Transf 49(3):381–389

    Article  MathSciNet  Google Scholar 

  16. Chen P, Liu XK, Tang Y et al (2005) Research on ploughing–extrusion process mechanism of multi/micro dimensional grooves inside cylindrical micro heat pipe. J Harbin Inst Technol (New Ser) 12(2):1–4

    Google Scholar 

  17. Zhao XL, Tang Y, Chen P (2006) Extrusion–ploughing process model and experiment research on fabrication of micro groove with fin structure. 2006 international technology and innovation conference, 2006, 524:755–760

  18. Li Y, Tang Y, Li XB et al (2008) Study on inner micro-grooves of heat pipe spinning process and multi-tooth mandrel. Key Eng Mater 375–376:358–363

    Article  Google Scholar 

  19. Li Y, Xiao H, Lian B et al (2008) Forming method of axial micro grooves inside copper heat pipe. Trans Nonferr Met Soc China (Engl Ed) 18(5):1229–1233

    Article  Google Scholar 

  20. Li XB, Tang Y, Li Y et al (2010) Sintering technology for micro heat pipe with sintered wick. J Cent S Univ Technol 17(1):102–109

    Article  Google Scholar 

  21. Ou DS, Tang Y, Wan ZP et al (2012) Effect of drawing parameters on elongation of micro copper tube with straight grooves. Key Eng Mater 499:62–67

    Article  Google Scholar 

  22. Fang XM, Wan ZP, Tang Y (2011) Experimental study of axial micro-grooves of micro-heat pipe forming via high-speed oil-filled spinning. Mech Sci Technol Aerosp Eng 30(5):727–731 (in Chinese)

    Google Scholar 

  23. Li XB, Li Y, Tang Y et al (2008) Forming method of sintered wick in micro heat pipe. J S China Univ Technol (Nat Sci Ed) 36(10):114–119 (in Chinese)

    Google Scholar 

  24. Li XB (2009) Study on manufacturing method and heat transfer capability of micro heat pipe with sintered wick. South China University of Technology, Guangzhou (in Chinese)

    Google Scholar 

  25. Jiang LL (2011) Manufacture and thermal performance of sintered-grooved composite wick in the flattened heat pipe. South China University of Technology, Guangzhou (in Chinese)

    Google Scholar 

  26. Lu LS, Tang Y, Yuan D et al (2009) Micro heat pipe manufacturing technology of vacuuming and filling work fluid. J Mech Eng 45(6):122–127 (in Chinese)

    Article  Google Scholar 

  27. Li XB, Guo JH, Wang SG et al (2011) Vacuum technologies in fabricating micro heat pipe with sintered wick. Chin J Vac Sci Technol 31(2):187–193 (in Chinese)

    MathSciNet  MATH  Google Scholar 

  28. Jiang LL, Tang Y, Pan MQ (2011) Effects of bending on heat transfer performance of axial micro-grooved heat pipe. J Cent S Univ Technol 18(18):580–586

    Article  Google Scholar 

  29. Li Y, He T, Zeng ZX (2012) Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression. Chin J Mech Eng 25(6):1210–1217

    Article  Google Scholar 

Download references

Acknowledgments

This project supported by University Key Teacher Foundation of Heilongjiang Province of China (1253G065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xibing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, M., Li, M. et al. Forming method of micro heat pipe with compound structure of sintered wick on grooved substrate. Heat Mass Transfer 52, 581–593 (2016). https://doi.org/10.1007/s00231-015-1585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1585-4

Keywords

Navigation