Skip to main content
Log in

Effects of a surface-tension gradient on the performance of a micro-grooved heat pipe: an analytical study

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We investigate effects of surface-tension gradients on the performance of a micro-grooved heat pipe in this work. The surface-tension gradient force is accounted for in the present model, and expressions for radius of curvature, liquid pressure, liquid velocity, and maximum heat throughput are found analytically using a regular perturbation technique. With a favorable surface-tension gradient, the liquid pressure drop across the heat pipe can be decreased by ∼90%, and the maximum heat throughput can be increased by ∼20%. In contrast, using an unfavorable surface-tension gradient, the liquid pressure drop increases by ∼150%, and the maximum heat throughput decreases by ∼15%. For the same values of the favorable and unfavorable surface-tension gradients, the unfavorable effect is more pronounced than the favorable one. The effects of the surface-tension gradients are found to be increasing with the corner angle of a polygonal heat pipe. Adverse effects of the surface-tension gradient could be due to the variations in the liquid temperature and/or surfactant concentration. Nevertheless, a favorable situation where the surface-tension gradient can facilitate the liquid flow in a heat pipe can also be obtained using a suitable surfactant, surface charge, etc., and then the performance of a micro heat pipe can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

smaller side length/side length of a heat pipe polygon, m

b :

larger side length of a heat pipe polygon, m

A l :

liquid flow cross-section area, m2

B, B 1, B 2, C 1, C 11 , C 3, C 4 :

constant

F s :

force due to surface-tension gradient, N

f r :

friction factor

f 1 :

dimensionless length of a condensing section

f 2 :

dimensionless length of condensing and adiabatic sections

g :

acceleration due to gravity, m s−2

K′:

constant in the expression for B 2

La:

length of an adiabatic section, m (Fig. 1)

Lc:

length of a condensing section, m (Fig. 1)

Le:

length of an evaporative section, m (Fig. 1)

L :

length of a heat pipe, m

\( L_{\rm h}^\prime \) :

half of wetted length per corner, m

L h :

half of total wetted length, m

n :

number of corners in a heat pipe polygon

N Re :

Reynolds number

P l :

liquid pressure, N m−2

P vo :

constant vapor pressure, N m−2

\( \Updelta{p}_{\rm l}^\ast\) :

dimensionless liquid pressure difference between hot and cold ends

ΔP c :

capillary pressure, N m−2

ΔP g :

pressure loss due to gravity, N m−2

ΔP l :

pressure loss due to liquid flow, N m−2

ΔP v :

pressure loss due to vapor flow, N m−2

Q :

heat supplied to coolant liquid from substrate, W

Q cr :

maximum heat throughput, W

\( Q_{\rm c}^{\prime\prime}\) :

heat flux in a condensing section, W m−2

\( Q_{\rm e}^{\prime\prime}\) :

heat flux in an evaporative section, W m−2

R :

radius of curvature, m

R R :

reference radius of curvature, m

R*:

nondimensional radius of curvature

\( R_{\rm c}^{\ast}\) :

nondimensional radius of curvature at a cold end

\( R_{\rm h}^{\ast}\) :

nondimensional radius of curvature at a hot end

\( R_0^{\ast}\) :

nondimensional radius of curvature without surface-tension gradient

\( R_1^{\ast}\) :

nondimensional radius of curvature with the first-order perturbation variable

\( R_{01}^{\ast}\) :

\( R_0^{\ast}\) at f 1

\( R_{02}^{\ast}\) :

\( R_0^{\ast}\) at f 2

\( R_{11}^{\ast}\) :

\( R_{1}^{\ast}\) at f 1

\( R_{12}^{\ast}\) :

\( R_{1}^{\ast}\) at f 2

V l :

axial liquid velocity, m s−1

\( V_{l}^{\ast}\) :

nondimensional liquid velocity

V R :

reference liquid velocity, m s−1

W b :

perimeter of a heat pipe polygon, m

x :

coordinate along the heat pipe length starting from a cold end, m

X*:

nondimensional coordinate along a heat pipe length starting from a cold end

α:

half of the corner angle of a heat pipe polygon, rad

β:

inclination of a substrate with horizontal, rad

ɛ:

perturbation variable

\(\Uppsi,\xi, \acute{\eta}\) :

used as an integration variable

γ:

contact angle, rad

ϕ:

curvature, rad

λ:

latent heat of vaporization of a coolant liquid, J kg−1

μl :

viscosity of a coolant liquid, kg m−1 s−1

ρl :

density of a coolant liquid, kg m−3

σ:

surface tension of a coolant liquid, N m−1

σ*:

dimensionless surface tension of a coolant liquid

σm :

mean surface tension of a coolant liquid, N m−1

σh :

surface tension of a coolant liquid at the hot end, N m−1

σc :

surface tension of a coolant liquid at the cold end, N m−1

τw :

wall shear stress, N m−2

References

  • Anand S, De S, DasGupta S (2002) Experimental and theoretical study of axial dry-out point for evaporative from V-shaped microgrooves. Int J Heat Mass Transf 45:1535–1543

    Article  Google Scholar 

  • Burns JM, Lewis GK, DeVico AL (1999) Soluble complexes of regulated upon activation, normal T cells expressed and secreted (RANTES) and glycosaminoglycans suppress HIV-1 infection but do not induce Ca2+ signaling. Proc Natl Acad Sci USA 96:14499

    Google Scholar 

  • Catton I, Stores GR (2002) A semi-analytical model to predict the capillary limit of heated inclined triangular capillary grooves. J Heat Transf 124:162–168

    Article  Google Scholar 

  • Cotter TP (1984) Principles and prospects of micro heat pipes. In: Proceedings of the 5th international heat pipe conference. Tsukuba, Japan, pp 328–332

  • Edwards D, Brenner H, Wasan D (1991) Interfacial transport processes and rheology. Butterworth-Heinemann, Boston

  • Gallardo BS, Gupta VK, Eagerton FD, Jong LI, Craig VS, Shah RR, Abbott NL (1999) Electrochemical principles for active control of liquids on submillimeter scales. Science 283:57–60

    Article  Google Scholar 

  • Garner FM, Longtin JP, Henderson HT, Hsieh WM, Ramdas P, Chang WS (1992) Flow and heat transfer limitations in micro heat pipes. In: Proceedings of ASME annual meeting. ASME HTD, vol 206, pp 99–104

  • Groll M, Rosler S (1992) Operation principles and performance of heat pipes and closed two-phase thermosyphons. J Non-equilib Thermodyn 17:91–151

    Article  Google Scholar 

  • Groll M, Schneider M, Sartre V, Zaghdoudi MC, Lallemand M (1998) Thermal control of electronic equipment by heat pipes. Revue Generale de Thermique 37:323–352

    Article  Google Scholar 

  • Grunze M (1999) Perspectives, surface science: driven liquids. Science 283:41–42

    Article  Google Scholar 

  • Ha JM, Peterson GP (1998) Analytical prediction of axial dry-out point for evaporating liquids in axial microgrooves. J Heat Transf 120:452–457

    Article  Google Scholar 

  • Khan AM, Mishro S, De S, DasGupta S (1999) An experimental and theoretical investigation of evaporating cooling from V-shaped microgrooves. Int J Transf Phenom 1:277–289

    Google Scholar 

  • Kumar S, Matar OK (2004) On the Faraday instability in a surfactant-covered liquid. Phys Fluids 16:39

    Article  Google Scholar 

  • Longtin JP, Badran B, Gerner FM (1994) A one-dimensional model of a micro-heat pipe during steady-state operation. J Heat Transf 116:709–715

    Article  Google Scholar 

  • Ma HB, Peterson GP (1996) Experimental investigation of the maximum heat transport in triangular grooves. J Heat Transf 118:740–746

    Article  Google Scholar 

  • Mallik AK, Peterson GP (1995) Steady-state investigation of vapor deposited micro heat pipe arrays. J Electron Packaging 117:75

    Article  Google Scholar 

  • Markos M, Ajaev VS, Homsy GM (2006) Steady flow and evaporation of a volatile liquid in a wedge. Phys Fluids 18:092102

    Article  Google Scholar 

  • Peterson GP (1992) Overview of micro heat pipe research and development. Appl Mech Rev 45:175–189

    Article  Google Scholar 

  • Peterson GP (1996) Modeling, fabrication and testing of micro heat pipes: an update. Appl Mech Rev 49:175–183

    Google Scholar 

  • Peterson GP (1997) Microscale energy transport, In: Tien CL, Majumdar A, Gerner FM (eds) Chap 8. Taylor and Francis

  • Peterson GP, Ma HB (1996) Theoretical analysis of the maximum heat transport in triangular grooves: a study of idealized micro heat pipe. J Heat Transf 118:731–739

    Article  Google Scholar 

  • Ravikumar M, DasGupta S (1997) Modeling of evaporation from V-shaped microgrooves. Chem Eng Commun 160:225–248

    Article  Google Scholar 

  • Savino R, Paterna D (2006) Marangoni effect and heat pipe dry-out. Phys Fluids 18:118103

    Article  Google Scholar 

  • Savino R, di Francescantonioa N, Fortezza R, Abe Y (2007) Heat pipes with binary mixtures and inverse marangoni effects for macrogravity applications. Acta Austraunatica 61:16–26

    Article  Google Scholar 

  • Suman B (2006a) A steady state model and maximum heat transport capacity for an electrohydrodynamically augmented micro grooved heat pipe. Int J Heat Mass Transf 49:3957–3967

    Article  MATH  Google Scholar 

  • Suman B (2006b) On the fill charge and the sensitivity analysis of a micro heat pipe. AIChE J 52:3041–3054

    Article  Google Scholar 

  • Suman B (2007) Modeling, experiment and fabrication of micro-grooved heat pipes: an update. Appl Mech Rev 60:107–119

    Article  Google Scholar 

  • Suman B, Hoda N (2005) Effect of variations in thermophysical properties and design parameters on the performance of a V-shaped micro grooved heat pipe. Int J Heat Mass Transf 48:2090–2101

    Article  Google Scholar 

  • Suman B, Hoda N (2007) On the transient analysis of a V-shaped micro grooved heat pipe. J Heat Transf 129(11):1584–1591

    Article  Google Scholar 

  • Suman B, Kumar P (2005) An analytical model for fluid flow and heat transfer in a micro heat pipe of polygonal shape. Int J Heat Mass Transf 48:4498–4509

    Article  Google Scholar 

  • Suman B, De S, DasGupta S (2005a) A Model of the capillary limit of a micro grooved heat pipe and the prediction of dry out length. Int J Heat Fluid Flow 26:495–505

    Article  Google Scholar 

  • Suman B, De S, DasGupta S (2005b) Transient modeling of micro-grooved heat pipe. Int J Heat Mass Transf 48:1633–1646

    Article  Google Scholar 

  • Swanson LW, Peterson GP (1995) Interfacial thermodynamics of micro heat pipes. J Heat Transf 117:195

    Article  Google Scholar 

  • Wu D, Peterson GP (1991) Investigation of the transient characteristics of a micro heat pipe. J Thermophys Heat Transf 5:129–134

    Article  Google Scholar 

  • Yang L, Homsy GM (2006) Steady three-dimensional thermocapillary flows and dry-out inside a V-shaped wedge. Phys Fluids 18:042107

    Article  Google Scholar 

Download references

Acknowledgments

The valuable suggestions from Dr. Manohar S. Sohal, Idaho National Laboratory, USA, are gratefully acknowledged. Insightful comments from the reviewers helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balram Suman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suman, B. Effects of a surface-tension gradient on the performance of a micro-grooved heat pipe: an analytical study. Microfluid Nanofluid 5, 655–667 (2008). https://doi.org/10.1007/s10404-008-0282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0282-8

Keywords

Navigation