Skip to main content
Log in

A geometric approach to the stabilisation of certain sequences of Kronecker coefficients

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We give another proof, using tools from Geometric Invariant Theory, of a result due to Sam and Snowden in (J Algebraic Comb 43(1):1–10, 2016), concerning the stability of Kronecker coefficients. This result states that some sequences of Kronecker coefficients eventually stabilise, and our method gives a nice geometric bound from which the stabilisation occurs. We perform the explicit computation of such a bound on two examples, one being the classical case of Murnaghan’s stability. Moreover, we see that our techniques apply to other coefficients arising in representation theory: namely to some plethysm coefficients, as well as multiplicities for tensor products of representations of the hyperoctahedral group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briand, E., Orellana, R., Rosas, M.: The stability of the Kronecker product of Schur functions. J. Algebra 331, 11–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brion, M.: Stable properties of plethysm: on two conjectures of Foulkes. Manuscripta Math. 80, 347–371 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colmenarejo, L.: Stability properties of the Plethysm: a combinatorial approach. Discrete Math. 340(8), 2020–2032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dolgachev, I.: Lectures on Invariant Theory. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  5. Dolgachev, I., Yi, H.: Variation of geometric invariant theory quotients. Publications Mathématiques de l’IHES 87(1), 5–51 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1984)

    Google Scholar 

  7. Fulton, W., Harris, J.: Representation Theory. A First Course. Graduate Texts in Mathematics, vol. 129. Springer, New York (1991)

    MATH  Google Scholar 

  8. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, vol. 21. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  9. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  10. Guillemin, V., Sternberg, S.: Geometric quantization and multiplicities of group representations. Inventiones Mathematicae 67(3), 515–538 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kumar, S.: Descent of line bundles to GIT quotients of flag varieties by maximal torus. Transform. Groups 13(3–4), 757–771 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kumar, S., Prasad, D.: Dimension of zero weight space: an algebro-geometric approach. J. Algebra 403, 324–344 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luna, D.: Slices étalés. Mémoires de la S. M. F. 33, 81–105 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Manivel, L.: On the asymptotics of Kronecker coefficients. J. Algebraic Comb. 42(4), 999–1025 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Murnaghan, F.D.: The analysis of the Kronecker product of irreducible representations of the symmetric group. Am J Math. 60, 761–784 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  16. Paradan, P.-E.: Stability property of multiplicities of group representations. J. Symplectic Geom. (2018) https://arxiv.org/abs/1510.05080

  17. Paradan, P.-E., Vergne, M.: Witten non abelian localization for equivariant \(K\)-theory, and the \([Q,R]=0\) theorem (2016). http://arxiv.org/pdf/1504.07502v2.pdf. Accessed 6 Apr 2018

  18. Ressayre, N.: The GIT-equivalence for \({G}\)-line bundles. Geom. Dedicata. 81(1–3), 295–324 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ressayre, N.: Geometric invariant theory and the generalized eigenvalue problem. Inventiones Mathematicae 180(2), 389–441 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sakamoto, M., Shoji, T.: Schur–Weyl reciprocity for Ariki–Koike algebras. J. Algebra 221, 293–314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sam, S.V., Snowden, A.: Proof of Stembridge’s conjecture on stability of Kronecker coefficients. J. Algebraic Comb. 43(1), 1–10 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Volume A. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

  23. Stembridge, J.R.: Generalized Stability of Kronecker Coefficients (2014). http://www.math.lsa.umich.edu/~jrs/papers/kron.pdf. Accessed 6 Apr 2018

  24. Teleman, C.: The quantization conjecture revisited. Ann. Math. 152, 1–43 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vallejo, E.: Stability of Kronecker products of irreducible characters of the symmetric group. Electron. J. Combin. 6(1), 1–7

  26. Wilson, J.C.H.: \({\rm FI}\)-modules and stability criteria for representations of classical Weyl groups. J. Algebra 420, 269–332 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Pelletier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelletier, M. A geometric approach to the stabilisation of certain sequences of Kronecker coefficients. manuscripta math. 158, 235–271 (2019). https://doi.org/10.1007/s00229-018-1021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1021-4

Mathematics Subject Classification

Navigation