Skip to main content
Log in

On the asymptotics of Kronecker coefficients

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Kronecker coefficients encode the tensor products of complex irreducible representations of symmetric groups. Their stability properties have been considered recently by several authors (Vallejo, Pak and Panova, Stembridge). We describe a geometric method, based on Schur–Weyl duality, that allows to produce huge series of instances of this phenomenon. Moreover, the method gives access to lots of extra information. Most notably, we can often compute the stable Kronecker coefficients, sometimes as numbers of points in very explicit polytopes. We can also describe explicitly the moment polytope in the neighbourhood of our stable triples. Finally, we explain an observation of Stembridge on the behaviour of certain rectangular Kronecker coefficients, by relating it to the affine Dynkin diagram of type \(E_6\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briand, E., Orellana, R., Rosas, M.: Quasipolynomial formulas for the Kronecker coefficients indexed by two two-row shapes. In 21st International Conference on Formal Power Series and Algebraic Combinatorics, pp. 241–252. Discrete Math. Theor. Comput. Sci., Nancy (2009)

  2. Briand, E., Orellana, R., Rosas, M.: Reduced Kronecker coefficients and counter-examples to Mulmuley’s strong saturation conjecture, with an appendix by K. Mulmuley. Comput. Complex. 18, 577–600 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Briand, E., Orellana, R., Rosas, M.: The stability of the Kronecker product of Schur functions. J. Algebra 331, 11–27 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buergisser, P., Landsberg, J.M., Manivel, L., Weyman, J.: An overview of mathematical issues arising in the Geometric Complexity Theory approach to VP versus VNP. SIAM J. Comput. 40, 1179–1209 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Christandl, M., Harrow, A.W., Mitchison, G.: Nonzero Kronecker coefficients and what they tell us about spectra. Comm. Math. Phys. 270, 575–585 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Franz, M.: Moment polytopes of projective \(G\)-varieties and tensor products of symmetric group representations. J. Lie Theory 12, 539–549 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Fulton, W.: Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Am. Math. Soc. 37, 209–249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hadziev, Dz: Certain questions of the theory of vector invariants. Mat. Sb. 72, 420–435 (1967)

    MathSciNet  Google Scholar 

  9. Kac, V.G.: Some remarks on nilpotent orbits. J. Algebra 64, 190–213 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kamnitzer, J.: Lectures on geometric constructions of the irreducible representations of \(GL_n\). arXiv:0912.0569

  11. Kirillov, A.N.: An invitation to the generalized saturation conjecture. Publ. Res. Inst. Math. Sci. 40, 1147–1239 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Klyachko, A.: Quantum Marginal problem and representations of the symmetric group (2004). arXiv:quant-ph/0409113v1

  13. Kostant, B.: Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, and the \(g\)-module structure of \(\Lambda g\). Adv. Math. 125, 275–350 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lazarsfeld, R.: Positivity in Algebraic Geometry. Springer, New York (2004)

    Book  Google Scholar 

  15. Manivel, L.: Applications de Gauss et pléthysme. Ann. Inst. Fourier 47, 715–773 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Manivel, L.: Symmetric Functions. Schubert Polynomials and Degeneracy Loci. SMF/AMS, Providence (2001)

    MATH  Google Scholar 

  17. Manivel, L.: A note on certain Kronecker coefficients. Proc. AMS 138, 1–7 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Manivel, L.: On rectangular Kronecker coefficients. J. Algebraic Combin. 33, 153–162 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Manivel, L.: Prehomogeneous spaces and projective geometry. Rend. Sem. Mat. Univ. Politec. Torino, 71, 35–118 (2013)

  20. Meinrenken, E., Sjamaar, R.: Singular reduction and quantization. Topology 38, 699–762 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mulmuley K.: Geometric Complexity Theory VI: the flip via saturated and positive integer programming in representation theory and algebraic geometry, arXiv:0704.0229

  22. Murnaghan, F.D.: The analysis of the Kronecker product of irreducible representations of the symmetric group. Am. J. Math. 60, 761–784 (1938)

    Article  MATH  MathSciNet  Google Scholar 

  23. Murnaghan, F.D.: On the analysis of the Kronecker product of irreducible representations of \(S_n\). Proc. Nat. Acad. Sci. USA 41, 515–518 (1955)

    Article  MathSciNet  Google Scholar 

  24. Pak, I., Panova, G.: Bounds on the Kronecker coefficients, arXiv:1406.2988

  25. Rassart, E.: A polynomiality property for Littlewood–Richardson coefficients. J. Combin. Theory Ser. A 107, 161–179 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ressayre, N.: Geometric invariant theory and the generalized eigenvalue problem. Invent. Math. 180, 389–441 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Snow, D.: Homogeneous vecro bundles, in Group actions and invariant theory (Montreal 1988). In CMS Conference Proceedings 10, AMS (1989)

  28. Stembridge, J.: Generalized stability of Kronecker coefficients, preprint, August 2014. With an Appendix available on http://www.math.lsa.umich.edu/jrs/papers

  29. Vallejo, E.: A stability property for coefficients in Kronecker products of complex \(S_n\) characters. Electron. J. Combin. 16(1), Note 22 (2009)

    MathSciNet  Google Scholar 

  30. Vallejo, E.: A diagrammatic approach to Kronecker squares. J. Comb. Theory 127, 243–285 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  31. Vallejo, E.: Stability of Kronecker coefficients via discrete tomography, arXiv:1408.6219

  32. Vergne, M.: Quantification géométrique et réduction symplectique, Séminaire Bourbaki, Vol. 2000/2001, Astérisque 282 (2002), Exp. 888, viii, pp. 249–278

  33. Vergne, M., Walter, M.: Moment cones of representations, arXiv:1410.8144

Download references

Acknowledgments

This paper was begun in Berkeley during the semester on Algorithms and Complexity in Algebraic Geometry organized at the Simons Institute for Computing, and completed in Montréal at the Centre de Recherches Mathématiques (Université de Montréal) and the CIRGET (UQAM). The author warmly thanks these institutions for their generous hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Manivel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivel, L. On the asymptotics of Kronecker coefficients. J Algebr Comb 42, 999–1025 (2015). https://doi.org/10.1007/s10801-015-0614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-015-0614-1

Keywords

Navigation