Skip to main content
Log in

Organic macromolecules in shells of Arctica islandica: comparison with nacroprismatic bivalve shells

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A detailed characterisation of the organic composition of Arctica islandica (Linnaeus, 1767) shells with homogenous microstructure is compared with nacroprismatic shells of Pinctada fucata martensii (Dunker, 1872), Hyriopsis cumingii (Lea, 1852) and Diplodon chilensis patagonicus (d’Orbigny, 1835). Thermogravimetric analysis shows lowest total organic contents of 1.65 wt% for A. islandica shells, while all nacroprismatic shells are higher (3.14–4.13 wt%). Macromolecules extracted from the nacroprismatic shells are dominated by hydrophobic amino acids (~ 54%) in the acid extracts, while EDTA-extracts are moderately rich in aspartate and glutamate (16% in total) and in glycine–alanine (42%). In comparison, A. islandica shells have higher concentrations of proline, glycine and aspartate (ca 40%). Infrared spectroscopy shows some acidic protein bands in A. islandica, which cannot be found in the nacroprismatic shells. Alcian Blue and/or modified silver staining methods reveal many prominent bands. Protein bands at around 10, 14, 17, 21, 26, 31, 40 and 55 kDa are detected in A. islandica shells for the first time, thus may constitute a new set of proteins in mollusc shells. SDS-PAGE exhibits apparent molecular weights from 5 to 63 kDa in nacroprismatic shells. Distinct protein bands at around 17 and 26 kDa in A. islandica shells may correspond to a post-translational modification of proteins; these prominent bands, however, are absent in the nacroprismatic samples. Contrarily, SDS-PAGE of both, homogeneous and nacroprismatic shell microstructures show nonacidic-matrix-proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addadi L, Weiner S (2014) Biomineralization: mineral formation by organisms. Phys Scr 89:098003

    Article  Google Scholar 

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987. doi:10.1002/chem.200500980

    Article  CAS  Google Scholar 

  • Agbaje O, Wirth R, Morales L, Shirai K, Kosnik M, Watanabe T, Jacob D (2017) Architecture of crossed-lamellar bivalve shells: the southern giant clam (Tridacna derasa, Röding, 1798). R Soc Open Sci 4:170622. doi:10.1098/rsos.170622

    Article  CAS  Google Scholar 

  • Arivalagan J, Marie B, Sleight VA, Clark MS, Berland S, Marie A (2016) Shell matrix proteins of the clam, Mya truncata: roles beyond shell formation through proteomic study. Mar Genom 27:69–74. doi:10.1016/j.margen.2016.03.005

    Article  Google Scholar 

  • Bédouet L, Schuller MJ, Marin F, Milet C, Lopez E, Giraud M (2001) Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comp Biochem Physiol B: Biochem Mol Biol 128:389–400

    Article  Google Scholar 

  • Bédouet L, Marie A, Dubost L, Péduzzi J, Duplat D, Berland S, Puisségur M, Boulzaguet H, Rousseau M, Milet C (2007) Proteomics analysis of the nacre soluble and insoluble proteins from the oyster Pinctada margaritifera. Mar Biotechnol 9:638–649. doi:10.1007/s10126-007-9017-1

    Article  Google Scholar 

  • Bevelander G, Nakahara H (1969) An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calcif Tissue Res 3:84–92. doi:10.1007/BF02058648

    Article  CAS  Google Scholar 

  • Brine CJ, Austin PR (1981) Chitin variability with species and method of preparation. Comp Biochem Physiol B: Biochem Mol Biol 69:283–286

    Article  Google Scholar 

  • Cárdenas G, Cabrera G, Taboada E, Miranda SP (2004) Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J Appl Polym Sci 93:1876–1885. doi:10.1002/app.20647

    Article  Google Scholar 

  • Carter JG (1990) Skeletal biomineralization: patterns, processes and evolutionary trends. Wiley, New York

    Google Scholar 

  • Carter JG, Aller RC (1975) Calcification in the bivalve periostracum. Lethaia 8:315–320

    Article  Google Scholar 

  • Cohen SA, Michaud DP (1993) Synthesis of a fluorescent derivatizing reagent, 6 aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem 211:279–287

    Article  CAS  Google Scholar 

  • Dauphin Y (2003) Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves Pinna nobilis and Pinctada margaritifera. J Biol Chem 278:15168–15177. doi:10.1074/jbc.M204375200

    Article  CAS  Google Scholar 

  • Dauphin Y, Denis A (2000) Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda. Comp Biochem Physiol A: Mol Integr Physiol 126:367–377

    Article  CAS  Google Scholar 

  • Farre B, Dauphin Y (2009) Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells. Comp Biochem Physiol B: Biochem Mol Biol 152:103–109

    Article  CAS  Google Scholar 

  • Giuffre AJ, Hamm LM, Han N, De Yoreo JJ, Dove PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci 110:9261–9266. doi:10.1073/pnas.1222162110

    Article  CAS  Google Scholar 

  • Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. ChemBioChem 4:522–529. doi:10.1002/cbic.200200548

    Article  CAS  Google Scholar 

  • Hamm LM, Giuffre AJ, Han N, Tao J, Wang D, De Yoreo JJ, Dove PM (2014) Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. Proc Natl Acad Sci 111:1304–1309. doi:10.1073/pnas.1312369111

    Article  CAS  Google Scholar 

  • Keith J, Stockwell S, Ball D, Remillard K, Kaplan D, Thannhauser T, Sherwood R (1993) Comparative analysis of macromolecules in mollusc shells. Comp Biochem Physiol B: Biochem Mol Biol 105:487–496

    Article  CAS  Google Scholar 

  • Kono M, Hayashi N, Samata T (2000) Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun 269:213–218. doi:10.1006/bbrc.2000.2274

    Article  CAS  Google Scholar 

  • Lavall RL, Assis OB, Campana-Filho SP (2007) β-Chitin from the pens of Loligo sp.: extraction and characterization. Bioresour Technol 98:2465–2472

    Article  CAS  Google Scholar 

  • Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. ‎J Struct Biol 135:8–17

    Article  CAS  Google Scholar 

  • Lombardi SJ, Kaplan DL (1990) The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetragnathidae). J Arachnol 18:297–306

    Google Scholar 

  • Lopes A, Hinzmann M, Bobos I, Lopes-Lima M, Gonçalves JF, rgio Ferreira S, Domingues B, Machado J (2014) Functional studies on the shell soluble matrix of Anodonta cygnea (Bivalvia: Unionidae). Nautilus 128:105–113

    Google Scholar 

  • Ma Y, Qiao L, Feng Q (2012) In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls. Mater Sci Eng, C 32:1963–1970

    Article  CAS  Google Scholar 

  • Ma Y, Berland S, Andrieu JP, Feng Q, Bédouet L (2013) What is the difference in organic matrix of aragonite vs. vaterite polymorph in natural shell and pearl? Study of the pearl forming freshwater bivalve mollusc Hyriopsis cumingii. Mater Sci Eng, C 33:1521–1529

    Article  CAS  Google Scholar 

  • Marie B, Luquet G, Pais De Barros JP, Guichard N, Morel S, Alcaraz G, Bollache L, Marin F (2007) The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). FEBS J 274:2933–2945. doi:10.1111/j.1742-4658.2007.05825.x

    Article  CAS  Google Scholar 

  • Marie B, Zanella-Cléon I, Corneillat M, Becchi M, Alcaraz G, Plasseraud L, Luquet G, Marin F (2011) Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus. FEBS J 278:2117–2130. doi:10.1111/j.1742-4658.2011.08129.x

    Article  CAS  Google Scholar 

  • Marin F, Luquet G (2005) Molluscan biomineralization: the proteinaceous shell constituents of Pinna nobilis L. Mater Sci Eng, C 25:105–111

    Article  Google Scholar 

  • Miyashita T, Takagi R, Okushima M, Nakano S, Miyamoto H, Nishikawa E, Matsushiro A (2000) Complementary DNA cloning and characterization of pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar Biotechnol 2:409–418. doi:10.1007/PL00021687

    CAS  Google Scholar 

  • Morrissey JH (1981) Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310

    Article  CAS  Google Scholar 

  • Natoli A, Wiens M, Schröder HC, Stifanic M, Batel R, Soldati AL, Jacob DE, Müller WE (2010) Bio-vaterite formation by glycoproteins from freshwater pearls. Micron 41:359–366

    Article  CAS  Google Scholar 

  • Pereira-Mouriès L, Almeida MJ, Ribeiro C, Peduzzi J, Barthélemy M, Milet C, Lopez E (2002) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. Eur J Biochem 269:4994–5003. doi:10.1046/j.1432-1033.2002.03203.x

    Article  Google Scholar 

  • Philipp EE, Wessels W, Gruber H, Strahl J, Wagner AE, Ernst IM, Rimbach G, Kraemer L, Schreiber S, Abele D (2012) Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions. PLoS ONE 7:e44621

    Article  CAS  Google Scholar 

  • Rahman MA, Isa Y, Takemura A, Uehara T (2006) Analysis of proteinaceous components of the organic matrix of endoskeletal sclerites from the alcyonarian Lobophytum crassum. Calcif Tissue Int 78:178–185. doi:10.1007/s00223-005-0253-y

    Article  CAS  Google Scholar 

  • Roeges NP (1994) A guide to the complete interpretation of infrared spectra of organic structures. Wiley, New York

    Google Scholar 

  • Ropes JW, Jones D, Murawski S, Serchuk F, Jearld A (1984) Documentation of annual growth lines in ocean quahogs, Arctica Islandica LINNE. Fish Bull 82:1–19

    Google Scholar 

  • Samata T (1990) Ca-binding glycoproteins in molluscan shells with different types of ultrastructure. Veliger 33:190–201

    Google Scholar 

  • Shirai K, Schöne BR, Miyaji T, Radarmacher P, Krause RA, Tanabe K (2014) Assessment of the mechanism of elemental incorporation into bivalve shells (Arctica islandica) based on elemental distribution at the microstructural scale. Geochim Cosmochim Acta 126:307–320. doi:10.1016/j.gca.2013.10.050

    Article  CAS  Google Scholar 

  • Stankiewicz BA, Mastalerz M, Hof CH, Bierstedt A, Flannery MB, Briggs DE, Evershed RP (1998) Biodegradation of the chitin-protein complex in crustacean cuticle. Org Geochem 28:67–76

    Article  CAS  Google Scholar 

  • Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structures of mollusc shell framework proteins. Nature 387:563–564

    Article  CAS  Google Scholar 

  • Taylor JD (1973) The structural evolution of the bivalve shell. Palaeontology 16:519–534

    Google Scholar 

  • Truong HH, Neilson KA, McInerney BV, Khoddami A, Roberts TH, Liu SY, Selle PH (2015) Performance of broiler chickens offered nutritionally-equivalent diets based on two red grain sorghums with quantified kafirin concentrations as intact pellets or re-ground mash following steam-pelleting at 65 or 97 °C conditioning temperatures. Anim Nutr 1:220–228

    Article  Google Scholar 

  • Wall RS, Gyi TJ (1988) Alcian blue staining of proteoglycans in polyacrylamide gels using the “critical electrolyte concentration” approach. Anal Biochem 175:298–299

    Article  CAS  Google Scholar 

  • Weidman CR, Jones GA (1994) The long-lived mollusc Arctica islandica: A new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the northern North Atlantic Ocean. J Geophys Res Oceans 99:18305–18314. doi:10.1029/94JC01882

    Article  Google Scholar 

  • Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29. doi:10.2113/0540001

    Article  CAS  Google Scholar 

  • Weiner S, Traub W (1980) X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett 111:311–316

    Article  CAS  Google Scholar 

  • Yan Z, Jing G, Gong N, Li C, Zhou Y, Xie L, Zhang R (2007) N40, a novel nonacidic matrix protein from pearl oyster nacre, facilitates nucleation of aragonite in vitro. Biomacromol 8:3597–3601. doi:10.1021/bm0701494

    Article  CAS  Google Scholar 

  • Zaitoun MA, Lin C (1997) Chelating behavior between metal ions and EDTA in sol–gel matrix. J Phys Chem B 101:1857–1860. doi:10.1021/jp963102d

    Article  CAS  Google Scholar 

  • Zhang C, Li S, Ma Z, Xie L, Zhang R (2006) A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar Biotechnol 8:624–633. doi:10.1007/s10126-006-6037-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mark Tran and Dr Christopher McRae are well-appreciated for their incessant technical supports. OBAA acknowledges Emily Gibson and Dr Bhumika Shah (Chemistry and Biomolecular Sciences, Macquarie University) for teaching him the basic techniques of gel electrophoresis. The authors are grateful to A. Checa and the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatoosin B. A. Agbaje.

Ethics declarations

Funding

This study was funded through an Australian Research Council (ARC) Future Fellowship to DEJ. The work was facilitated in part by the Australian Government’s National Collaborative Research Strategy (NCRIS) and its facilities at the Australian Proteome Analysis Facility (APAF).

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of mollusc shells were followed. Recently alive shells: Arctica islandica, Hyriopsis cumingii, Diplodon chilensis patagonicus and Pinctada fucata martensii were provided from the private collection of one of the authors (DEJ).

Additional information

Responsible Editor: A. G. Checa.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agbaje, O.B.A., Thomas, D.E., Mclnerney, B.V. et al. Organic macromolecules in shells of Arctica islandica: comparison with nacroprismatic bivalve shells. Mar Biol 164, 208 (2017). https://doi.org/10.1007/s00227-017-3238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3238-2

Navigation