Skip to main content

Advertisement

Log in

Novel bamboo-based metal composites prepared with a high-efficiency thermal spraying method: a preliminary study

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Bamboo is one of the green building materials that have been used for centuries. Combining with metal materials will endow bamboo with new functions, such as weather resistance, anti-corrosion, conductivity, and electromagnetic shielding. However, there is a natural barrier between bamboo and metal materials. This paper proposes fabrication of novel bamboo-based metal composites (BMC) which are composed of bamboo substrate and metal coating, without any adhesive, using an efficient and sustainable arc thermal spraying technique. In this method, the metal wire is melted and deposited on the bamboo substrate through a high-temperature heat source. In the feasibility experiment, arc spraying using aluminum as the wire electrode was selected. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to observe and test the fabricated specimens. It was demonstrated that when the spraying voltage was 40 V, the deposition rate was as high as 5.8 g/min with the average thickness of the metal coating exceeding 400 μm. The surface of the BMC aluminum coating was flat, continuous, and compact with an average roughness of about Ra 3.0 μm. Based on experimental results, the integrity of bamboo substrate in thermal spraying was discussed. Results from SEM–EDS test showed that there are crack areas and adhesion areas between bamboo and metal coatings, and the highest bonding strength exhibited over 1.0 MPa. This work provides a new practice of fabricating novel BMC through a green manufacturing method with high efficiency. The findings of this study may be useful in understanding the preparation of BMC and can help find their suitability for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Download references

Acknowledgements

This work was supported by Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF) [No. CX(20)3067].

Author information

Authors and Affiliations

Authors

Contributions

Jipeng CHEN: Method, draft writing, experimentation, revision Linghao Wang:experimentation Hongping Zhou: revision.

Corresponding author

Correspondence to Jipeng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, L. & Zhou, H. Novel bamboo-based metal composites prepared with a high-efficiency thermal spraying method: a preliminary study. Wood Sci Technol 58, 487–502 (2024). https://doi.org/10.1007/s00226-024-01538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-024-01538-1

Navigation