Skip to main content
Log in

Effect of hemicellulose molecular structure on wettability and surface adhesion to ureaformaldehyde resin adhesives

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

This study examined the effect of hemicellulose molecular structure on wettability and surface adhesion to urea–formaldehyde resin adhesives to better understand the complex adhesion process of wood biopolymers. Molecular structure of two hemicelluloses, such as arabinogalactan and xylan, was characterized using Fourier transform infrared, one-dimensional, and two-dimensional nuclear magnetic resonances. As a result, arabinogalactan had a hyperbranched structure, whereas xylan was more linear, which caused a distinctive morphology in their films, with the latter having a rougher surface. Further, the surface adhesion between hemicellulose and UF resins with various formaldehyde to urea molar ratios (1.0 and 1.6) was measured. The adhesion force and work of adhesion of arabinogalactan with different UF resins were found to be greater than those of xylan due to the former film’s higher surface free energy, more exposed OH groups, and smoother surface. In addition, 1.6 UF resins exhibited greater adhesion than 1.0 UF resins, regardless of the hemicellulose type, demonstrating that dispersion force was dominant in their molecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Scheme 4

Similar content being viewed by others

References

  • Ahola S, Salmi J, Johansson LS et al (2008) Model films from native cellulose nanofibrils preparation, swelling, and surface interactions. Biomacromol 9:1273–1282

    Article  CAS  Google Scholar 

  • Albornoz-Palma G, Ching D, Valerio O et al (2020) Effect of lignin and hemicellulose on the properties of lignocellulose nanofibril suspensions. Cellulose 27:10631–10647

    Article  CAS  Google Scholar 

  • Bian J, Peng F, Peng X-P et al (2012) Isolation of hemicelluloses from sugarcane bagasse at different temperatures: structure and properties. Carbohydr Polym 88:638–645

    Article  CAS  Google Scholar 

  • Brett CJ, Mittal N, Ohm W et al (2019) Water-induced structural rearrangements on the nanoscale in ultrathin nanocellulose films. Macromolecules 52:4721–4728

    Article  CAS  Google Scholar 

  • Carrick C, Pendergraph SA, Wågberg L (2014) Nanometer smooth, macroscopic spherical cellulose probes for contact adhesion measurements. ACS Appl Mater Interface 6:20928–20935

    Article  CAS  Google Scholar 

  • Cheng J, Wei C, Li W et al (2021) Structural characteristics and enhanced biological activities of partially degraded arabinogalactan from larch sawdust. Int J Biol Macromol 171:550–559

    Article  CAS  PubMed  Google Scholar 

  • Cwikel D, Zhao Q, Liu C et al (2010) Comparing contact angle measurements and surface tension assessments of solid surfaces. Langmuir 26:15289–15294

    Article  CAS  PubMed  Google Scholar 

  • Duchesne I, Hult E, Molin U et al (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111

    Article  CAS  Google Scholar 

  • Dunky M (1998) Urea–formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes 18:95–107

    Article  CAS  Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives - biopolymers with valuable properties, 1. naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  • Gao C, Ren J, Kong W et al (2015) Comparative study on temperature/pH sensitive xylan-based hydrogels: their properties and drug controlled release. RSC Adv 5:90671–90681

    Article  CAS  Google Scholar 

  • Goellner EM, Utermoehlen J, Kramer R, Classen B (2011) Structure of arabinogalactan from larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr Polym 86:1739–1744

    Article  CAS  Google Scholar 

  • Gustafsson E, Johansson E, Wågberg L, Pettersson T (2012) Direct adhesive measurements between wood biopolymer model surfaces. Biomacromol 13:3046–3053

    Article  CAS  Google Scholar 

  • Hollertz R, Arwin H, Faure B et al (2013) Dielectric properties of lignin and glucomannan as determined by spectroscopic ellipsometry and Lifshitz estimates of non-retarded Hamaker constants. Cellulose 20:1639–1648

    Article  CAS  Google Scholar 

  • Jakes JE, Zelinka SL, Hunt CG et al (2020) Measurement of moisture-dependent ion diffusion constants in wood cell wall layers using time-lapse micro X-ray fluorescence microscopy. Sci Rep 10:1–11

    Article  CAS  Google Scholar 

  • Jeong B, Park B-D (2019) Effect of molecular weight of urea–formaldehyde resins on their cure kinetics, interphase, penetration into wood, and adhesion in bonding wood. Wood Sci Technol 53:665–685

    Article  CAS  Google Scholar 

  • Joe J, Thouless MD, Barber JR (2018) Effect of roughness on the adhesive tractions between contacting bodies. J Mech Phys Solid 118:365–373

    Article  Google Scholar 

  • Kac̆uráková M, Capek P, Sasinková V et al (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Article  Google Scholar 

  • Levendis D, Pizzi A, Ferg E (1992) The correlation of strength and formaldehyde emission with the crystalline/amorphous structure of UF resins. Holzforschung 46:263–269

    Article  CAS  Google Scholar 

  • Linder Å, Bergman R, Bodin A, Gatenholm P (2003) Mechanism of assembly of Xylan onto cellulose surfaces. Langmuir 19:5072–5077

    Article  CAS  Google Scholar 

  • Luner P, Sandell M (2007) The wetting of cellulose and wood hemicelluloses. J Polym Sci Part C Polym Symp 28:115–142

    Article  Google Scholar 

  • Myers D (1999) Surfaces, interfaces, and colloids. John Wiley, New York, USA

    Book  Google Scholar 

  • Nagel A, Conrad J, Leitenberger M et al (2016) Structural studies of the arabinogalactans in mangifera indica L. fruit exudate. Food Hydrocoll 61:555–566

    Article  CAS  Google Scholar 

  • Niu X, Liu Y, Fang G et al (2018) Highly transparent, strong, and flexible films with modified cellulose nanofiber bearing UV shielding property. Biomacromol 19:4565–4575

    Article  CAS  Google Scholar 

  • Notley SM, Norgren M (2010) Surface energy and wettability of spin-coated thin films of lignin isolated from wood. Langmuir 26:5484–5490

    Article  CAS  PubMed  Google Scholar 

  • Nuryawan A, Park B-D, Singh AP (2014) Penetration of urea–formaldehyde resins with different formaldehyde/urea mole ratios into softwood tissues. Wood Sci Technol 48:889–902

    Article  CAS  Google Scholar 

  • Nypelö T, Asaadi S, Kneidinger G et al (2018) Conversion of wood-biopolymers into macrofibers with tunable surface energy via dry-jet wet-spinning. Cellulose 25:5297–5307

    Article  PubMed  CAS  Google Scholar 

  • Pastewka L, Robbins MO (2014) Contact between rough surfaces and a criterion for macroscopic adhesion. Proc Natl Acad Sci 111:3298–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng P, Peng F, Bian J et al (2011a) Studies on the starch and hemicelluloses fractionated by graded ethanol precipitation from bamboo phyllostachys bambusoides f. shouzhu Yi. J Agric Food Chem 59:2680–2688

    Article  CAS  PubMed  Google Scholar 

  • Peng XW, Ren JL, Zhong LX, Sun RC (2011b) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 12:3321–3329

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102

    Article  CAS  Google Scholar 

  • Pizzi A, Valenzuela J (1994) Theory and practice of the preparation of low formaldehyde emission uf adhesives. Holzforschung 48:254–261

    Article  CAS  Google Scholar 

  • Ponder GR, Richards GN (1997) Arabinogalactan from Western larch, part III: alkaline degradation revisited, with novel conclusions on molecular structure. Carbohydr Polym 34:251–261

    Article  CAS  Google Scholar 

  • Ramos A, Sousa S, Evtuguin DV, Gamelas JAF (2017) Functionalized xylans in the production of xylan-coated paper laminates. React Funct Polym 117:89–96

    Article  CAS  Google Scholar 

  • Saxena A, Elder TJ, Pan S, Ragauskas AJ (2009) Novel nanocellulosic xylan composite film. Compos Part B Eng 40:727–730

    Article  CAS  Google Scholar 

  • Sczech R, Riegler H (2006) Molecularly smooth cellulose surfaces for adhesion studies. J Colloid Interface Sci 301:376–385

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Khaire KC, Thakur A et al (2020) Acacia Xylan as a substitute for commercially available Xylan and its application in the production of Xylooligosaccharides. ACS Omega 5:13729–13738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa-Gil C, Babiano R, Cintas P et al (2021) On the anomeric preference of the isothiocyanato group. New J Chem. https://doi.org/10.1039/D1NJ00852H

    Article  Google Scholar 

  • Sun Y, Jiang Y, Choi C-H et al (2017) Direct Measurements of adhesion forces for water droplets in contact with smooth and Patterned polymers. Surf Innov 6:1–52

    Article  CAS  Google Scholar 

  • Synytsya A, Čopíková J, Matějka P, Machovič V (2003) Fourier transform raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106

    Article  CAS  Google Scholar 

  • Tang S, Jiang M, Huang C et al (2018) Characterization of arabinogalactans from larix principis-rupprechtii and their effects on no production by macrophages. Carbohydr Polym 200:408–415

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Wang T, Huang C et al (2020) Arabinogalactans from larix principis-rupprechtii: an investigation into the structure-function contribution of side-chain structures. Carbohydr Polym 227:115354

    Article  CAS  PubMed  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  CAS  Google Scholar 

  • van Oss CJ (1993) Acid-base interfacial interactions in aqueous media. Colloid Surf A Physicochem Eng ASP 78:1–49

    Article  Google Scholar 

  • van Oss CJ (2006) Interfacial forces in aqueous media. CRC Press

    Google Scholar 

  • van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz–van der Waals and polar interactions in macroscopic systems. Chem Rev 88:927–941

    Article  Google Scholar 

  • Velkova N, Doliška A, Fras Zemljič L et al (2015) Influence of carboxymethylation on the surface physical-chemical properties of glucuronoxylan and arabinoxylan films. Polym Eng Sci 55:2706–2713

    Article  CAS  Google Scholar 

  • Wang H, Cao M, Li T et al (2018) Characterization of the low molar ratio urea-formaldehyde resin with 13C NMR and ESI–MS: negative effects of the post-added urea on the urea-formaldehyde polymers. Polym (Basel) 10:602

    Article  CAS  Google Scholar 

  • Wang D, Jiang Y, Zhu Z et al (2020) Contact line and adhesion force of droplets on concentric ring-textured hydrophobic surfaces. Langmuir 36:2622–2628

    Article  CAS  PubMed  Google Scholar 

  • Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrolysis 110:130–137

    Article  CAS  Google Scholar 

  • Wibowo ES, Park B-D (2021a) Direct measurement of surface adhesion between thin films of nanocellulose and urea–formaldehyde resin adhesives. Cellulose 28:8459–8481

    Article  CAS  Google Scholar 

  • Wibowo ES, Park B (2021b) Crystalline lamellar structure of thermosetting urea-formaldehyde resins at a low molar ratio. Macromolecules 54:2366–2375

    Article  CAS  Google Scholar 

  • Wibowo ES, Park B-D (2022) Two-dimensional nuclear magnetic resonance analysis of hydrogen-bond formation in thermosetting crystalline urea-formaldehyde resins at a low molar ratio. ACS Appl Polym Mater 4:1084–1094

    Article  CAS  Google Scholar 

  • Wibowo ES, Park B-D, Causin V (2020) Hydrogen-bond-induced crystallization in low-molar-ratio urea-formaldehyde resins during synthesis. Ind Eng Chem Res 59:13095–13104

    Article  CAS  Google Scholar 

  • Wibowo ES, Park B, Causin V (2021) Recent advances in urea–formaldehyde resins: converting crystalline thermosetting polymers back to amorphous ones. Polym Rev. https://doi.org/10.1080/15583724.2021.2014520

    Article  Google Scholar 

  • Wiercigroch E, Szafraniec E, Czamara K et al (2017) Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim Acta Part A Mol Biomol Spectrosc 185:317–335

    Article  CAS  Google Scholar 

  • Willför S, Sjöholm R, Laine C, Holmbom B (2002) Structural features of water-soluble arabinogalactans from Norway spruce and scots pine heartwood. Wood Sci Technol 36:101–110

    Article  CAS  Google Scholar 

  • Wu J, Xu Y, Zhu B et al (2020) Characterization of an arabinogalactan from the fruit hulls of ficus pumila linn and its immunomodulatory effect. J Funct Food 73:104091

    Article  CAS  Google Scholar 

  • Zhang X, Chen M, Wang H et al (2015) Characterization of Xylan- graft -polycaprolactone copolymers prepared in ionic liquid. Ind Eng Chem Res 54:6282–6290

    Article  CAS  Google Scholar 

  • Zhong LX, Peng XW, Yang D et al (2013) Long-chain anhydride modification: a new strategy for preparing xylan films. J Agric Food Chem 61:655–661

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea funded by the Korean Government (MSIT) (Grant No. 2020R1A2C1005042).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of both authors. Both the authors have given approval to the final version of the manuscript. Both the authors contributed equally to this manuscript.

Corresponding author

Correspondence to Byung-Dae Park.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wibowo, E.S., Park, BD. Effect of hemicellulose molecular structure on wettability and surface adhesion to ureaformaldehyde resin adhesives. Wood Sci Technol 56, 1047–1070 (2022). https://doi.org/10.1007/s00226-022-01397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-022-01397-8

Navigation