Skip to main content
Log in

Hamiltonian pseudo-rotations of projective spaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The main theme of the paper is the dynamics of Hamiltonian diffeomorphisms of \(\mathbb {C}{\mathbb {P}}^n\) with the minimal possible number of periodic points (equal to \(n+1\) by Arnold’s conjecture), called here Hamiltonian pseudo-rotations. We prove several results on the dynamics of pseudo-rotations going beyond periodic orbits, using Floer theoretical methods. One of these results is the existence of invariant sets in arbitrarily small punctured neighborhoods of the fixed points, partially extending a theorem of Le Calvez and Yoccoz and of Franks and Misiurewicz to higher dimensions. The other is a strong variant of the Lagrangian Poincaré recurrence conjecture for pseudo-rotations. We also prove the \(C^0\)-rigidity of pseudo-rotations with exponentially Liouville mean index vector. This is a higher-dimensional counterpart of a theorem of Bramham establishing such rigidity for pseudo-rotations of the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov, D.V., Katok, A.B.: New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trudy Moskov. Mat. Obšč. 23, 3–36 (1970). (in Russian)

    MathSciNet  MATH  Google Scholar 

  2. Batoréo, M.: On hyperbolic points and periodic orbits of symplectomorphisms. J. Lond. Math. Soc. (2) 91, 249–265 (2015)

    Article  MathSciNet  Google Scholar 

  3. Batoréo, M.: On non-contractible hyperbolic periodic orbits and periodic points of symplectomorphisms. J. Sympl. Geom. 15, 687–717 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bramham, B.: Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves. Ann. Math. (2) 181, 1033–1086 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bramham, B.: Pseudo-rotations with sufficiently Liouvillean rotation number are \(C^0\)-rigid. Invent. Math. 199, 561–580 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bramham, B., Hofer, H.: First steps towards a symplectic dynamics. Surv. Differ. Geom. 17, 127–178 (2012)

    Article  MathSciNet  Google Scholar 

  7. Buhovsky, L., Humilière, V., Seyfaddini, S.: The action spectrum and \(C^0\) symplectic topology (in preparation)

  8. Chance, M., Ginzburg, V.L., Gürel, B.Z.: Action-index relations for perfect Hamiltonian diffeomorphisms. J. Sympl. Geom. 11, 449–474 (2013)

    Article  MathSciNet  Google Scholar 

  9. Chekanov, Y.: Lagrangian intersections, symplectic energy, and areas of holomorphic curves. Duke Math. J. 95, 213–226 (1998)

    Article  MathSciNet  Google Scholar 

  10. Chekanov, Y.: Differential algebra of Legendrian links. Invent. Math. 150, 441–483 (2002)

    Article  MathSciNet  Google Scholar 

  11. Cineli, E.: Conley conjecture and local Floer homology. Preprint arXiv:1710.07749

  12. Collier, B., Kerman, E., Reiniger, B., Turmunkh, B., Zimmer, A.: A symplectic proof of a theorem of Franks. Compos. Math. 148, 1969–1984 (2012)

    Article  MathSciNet  Google Scholar 

  13. Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal. Special Volume, Part II, 560–673 (2000)

  14. Entov, M., Polterovich, L.: Calabi quasimorphism and quantum homology. Int. Math. Res. Not. IMRN 30, 1635–1676 (2003)

    Article  MathSciNet  Google Scholar 

  15. Fathi, A., Herman, M.: Existence de diféomorphismes minimaux. In: Dynamical Systems, Vol. I—Warsaw, Astérisque, No. 49, Soc. Math. France, Paris, pp. 37–59 (1977)

  16. Fayad, B., Katok, A.: Constructions in elliptic dynamics. Ergod. Theory Dyn. Syst. 24, 1477–1520 (2004)

    Article  MathSciNet  Google Scholar 

  17. Fish, J.W.: Target-local Gromov compactness. Geom. Topol. 15, 765–826 (2011)

    Article  MathSciNet  Google Scholar 

  18. Floer, A.: Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120, 575–611 (1989)

    Article  MathSciNet  Google Scholar 

  19. Fortune, B.: A symplectic fixed point theorem for \(\mathbb{CP}^n\). Invent. Math. 81, 29–46 (1985)

    Article  MathSciNet  Google Scholar 

  20. Fortune, B., Weinstein, A.: A symplectic fixed point theorem for complex projective spaces. Bull. Am. Math. Soc. (N.S.) 12, 128–130 (1985)

    Article  MathSciNet  Google Scholar 

  21. Franks, J.: Geodesics on \(S^2\) and periodic points of annulus homeomorphisms. Invent. Math. 108, 403–418 (1992)

    Article  MathSciNet  Google Scholar 

  22. Franks, J.: Area preserving homeomorphisms of open surfaces of genus zero. N. Y. J. Math. 2, 1–19 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Franks, J.: The Conley index and non-existence of minimal homeomorphisms. In: Proceedings of the Conference on Probability, Ergodic Theory, and Analysis (Evanston, IL, 1997). Illinois J. Math., 43, 457–464 (1999)

  24. Franks, J., Handel, M.: Periodic points of Hamiltonian surface diffeomorphisms. Geom. Topol. 7, 713–756 (2003)

    Article  MathSciNet  Google Scholar 

  25. Franks, J., Misiurewicz, M.: Topological Methods in Dynamics. Handbook of Dynamical Systems, vol. 1A, pp. 547–598. North-Holland, Amsterdam (2002)

    MATH  Google Scholar 

  26. Ginzburg, V.L.: The Weinstein conjecture and theorems of nearby and almost existence. In: Marsden, J.E., Ratiu, T.S. (eds.) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 139–172. Birkhäuser, Boston (2005)

    Chapter  Google Scholar 

  27. Ginzburg, V.L.: Coisotropic intersections. Duke Math. J. 140, 111–163 (2007)

    Article  MathSciNet  Google Scholar 

  28. Ginzburg, V.L.: The Conley conjecture. Ann. Math. (2) 172, 1127–1180 (2010)

    Article  MathSciNet  Google Scholar 

  29. Ginzburg, V.L., Gürel, B.Z.: Action and index spectra and periodic orbits in Hamiltonian dynamics. Geom. Topol. 13, 2745–2805 (2009)

    Article  MathSciNet  Google Scholar 

  30. Ginzburg, V.L., Gürel, B.Z.: Local Floer homology and the action gap. J. Sympl. Geom. 8, 323–357 (2010)

    Article  MathSciNet  Google Scholar 

  31. Ginzburg, V.L., Gürel, B.Z.: Conley conjecture for negative monotone symplectic manifolds. Int. Math. Res. Not. IMRN 8, 1748–1767 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Ginzburg, V.L., Gürel, B.Z.: Hyperbolic fixed points and periodic orbits of Hamiltonian diffeomorphisms. Duke Math. J. 163, 565–590 (2014)

    Article  MathSciNet  Google Scholar 

  33. Ginzburg, V.L., Gürel, B.Z.: The Conley conjecture and beyond. Arnold Math. J. 1, 299–337 (2015)

    Article  MathSciNet  Google Scholar 

  34. Ginzburg, V.L., Gürel, B.Z.: Non-contractible periodic orbits in Hamiltonian dynamics on closed symplectic manifolds. Compos. Math. 152, 1777–1799 (2016)

    Article  MathSciNet  Google Scholar 

  35. Ginzburg, V.L., Gürel, B.Z.: Lusternik–Schnirelmann theory and closed Reeb orbits. Preprint arXiv:1601.03092

  36. Ginzburg, V.L., Gürel, B.Z.: Conley conjecture revisited. Int. Math. Res. Not. IMRN (2017). https://doi.org/10.1093/imrn/rnx137

    Article  Google Scholar 

  37. Ginzburg, V.L., Gürel, B.Z.: Pseudo-rotations vs. rotations (in preparation)

  38. Ginzburg, V.L., Kerman, E.: Homological resonances for Hamiltonian diffeomorphisms and Reeb flows. Int. Math. Res. Not. IMRN 2010, 53–68 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Gürel, B.Z.: On non-contractible periodic orbits of Hamiltonian diffeomorphisms. Bull. Lond. Math. Soc. 45, 1227–1234 (2013)

    Article  MathSciNet  Google Scholar 

  40. Gürel, B.Z.: Periodic orbits of Hamiltonian systems linear and hyperbolic at infinity. Pac. J. Math. 271, 159–182 (2014)

    Article  MathSciNet  Google Scholar 

  41. Hein, D.: The Conley conjecture for irrational symplectic manifolds. J. Sympl. Geom. 10, 183–202 (2012)

    Article  MathSciNet  Google Scholar 

  42. Hernández-Corbato, L., Presas, F.: The conjugation method in symplectic dynamics. Rev. Mat. Iberoam. Preprint arXiv:1605.09161 (to appear)

  43. Hingston, N.: Subharmonic solutions of Hamiltonian equations on tori. Ann. Math. (2) 170, 525–560 (2009)

    Article  MathSciNet  Google Scholar 

  44. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkäuser, Basel (1994)

    Book  Google Scholar 

  45. Kislev, A., Shelukhin, E.: Private communication (2018)

  46. Le Calvez, P.: Periodic orbits of Hamiltonian homeomorphisms of surfaces. Duke Math. J. 133, 125–184 (2006)

    Article  MathSciNet  Google Scholar 

  47. Le Calvez, P., Yoccoz, J.-C.: Un théorème d’indice pour les homéomorphismes du plan au voisinage d’un point fixe. Ann. Math. (2) 146, 241–293 (1997)

    Article  MathSciNet  Google Scholar 

  48. Lê, H.V., Ono, K.: Cup-length estimates for symplectic fixed points. In: Thomas, C.B. (ed.) Contact and Symplectic Geometry (Cambridge, 1994), Publ. Newton Inst., vol. 8, pp. 268–295. Cambridge University Press, Cambridge (1996)

  49. Long, Y.: Index Theory for Symplectic Paths with Applications. Birkhäuser, Basel (2002)

    Book  Google Scholar 

  50. McDuff, D.: From symplectic deformation to isotopy. In: Stern, R.J. (ed.) Topics in Symplectic 4-Manifolds (Irvine, CA, 1996). First International Press Lecture Series I, pp. 85–99. International Press, Cambridge (1998)

  51. McDuff, D.: Symplectic embeddings of 4-dimensional ellipsoids. J. Topol. 2, 1–22 (2009)

    Article  MathSciNet  Google Scholar 

  52. McDuff, D.: Monodromy in Hamiltonian Floer theory. Comment. Math. Helv. 85, 95–133 (2010)

    Article  MathSciNet  Google Scholar 

  53. McDuff, D., Salamon, D.: J-Holomorphic Curves and Symplectic Topology, Colloquium Publications, vol. 52. AMS, Providence (2012)

    MATH  Google Scholar 

  54. Mohnke, K.: Holomorphic disks and the chord conjecture. Ann. Math. (2) 154, 219–222 (2001)

    Article  MathSciNet  Google Scholar 

  55. Oh, Y.-G.: Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group. Duke Math. J. 130, 199–295 (2005)

    MathSciNet  MATH  Google Scholar 

  56. Oh, Y.-G.: Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds. In: Marsden, J.E., Ratiu, T.S. (eds.) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 525–570. Birkhäuser, Boston (2005)

    Chapter  Google Scholar 

  57. Orita, R.: Non-contractible periodic orbits in Hamiltonian dynamics on tori. Bull. Lond. Math. Soc. 49, 571–580 (2017)

    Article  MathSciNet  Google Scholar 

  58. Orita, R.: On the existence of infinitely many non-contractible periodic trajectories in Hamiltonian dynamics on closed symplectic manifolds. J. Sympl. Geom. Preprint arXiv:1703.01731 (to appear)

  59. Piunikhin, S., Salamon, D., Schwarz, M.: Symplectic Floer-Donaldson theory and quantum cohomology. In: Thomas, C.B. (ed.) Contact and Symplectic Geometry (Cambridge, 1994), Publ. Newton Inst., vol. 8, pp. 171–200. Cambridge University Press, Cambridge (1996)

  60. Polterovich, L.: Growth of maps, distortion in groups and symplectic geometry. Invent. Math. 150, 655–686 (2002)

    Article  MathSciNet  Google Scholar 

  61. Salamon, D.A.: Lectures on Floer homology. In: Eliashberg, Y., Traynor, L.M. (eds.) Symplectic Geometry and Topology. IAS/Park City Mathematics Series, vol. 7, pp. 143–229. American Mathematical Society, Providence (1999)

    Chapter  Google Scholar 

  62. Salamon, D., Zehnder, E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun. Pure Appl. Math. 45, 1303–1360 (1992)

    Article  MathSciNet  Google Scholar 

  63. Schwarz, M.: A quantum cup-length estimate for symplectic fixed points. Invent. Math. 133, 353–397 (1998)

    Article  MathSciNet  Google Scholar 

  64. Schwarz, M.: On the action spectrum for closed symplectically aspherical manifolds. Pac. J. Math. 193, 419–461 (2000)

    Article  MathSciNet  Google Scholar 

  65. Seyfaddini, S.: \(C^0\)-limits of Hamiltonian paths and the Oh–Schwarz spectral invariants. Int. Math. Res. Not. IMRN 2013, 4920–4960 (2013)

    Article  MathSciNet  Google Scholar 

  66. Usher, M.: The sharp energy-capacity inequality. Commun. Contemp. Math. 12, 457–473 (2010)

    Article  MathSciNet  Google Scholar 

  67. Usher, M.: Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds. Israel J. Math. 184, 1–57 (2011)

    Article  MathSciNet  Google Scholar 

  68. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, Berlin (1982)

    Book  Google Scholar 

  69. Viterbo, C.: Symplectic topology as the geometry of generating functions. Math. Ann. 292, 685–710 (1992)

    Article  MathSciNet  Google Scholar 

  70. Viterbo, C.: The cup-product on the Thom-Smale-Witten complex, and Floer cohomology. In: Hofer, H., Taubes, C.H., Weinstein, A., Zehnder, E. (eds.) The Floer Memorial Volume. Progress in Mathematics, vol. 133, pp. 609–625. Birkhäuser, Basel (1995)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Barney Bramham, Weinmin Gong, Felix Schlenk, Sobhan Seyfaddini, Egor Shelukhin, Michael Usher, Joa Weber and the referees for useful remarks and discussions. Parts of this work were carried out while both of the authors were visiting the Lorentz Center (Leiden, Netherlands) for the Hamiltonian and Reeb Dynamics: New Methods and Applications workshop, during the first author’s visit to NCTS (Taipei, Taiwan) and the second author’s visit to UCSC (Santa Cruz, California). The authors would like to thank these institutes for their warm hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor L. Ginzburg.

Additional information

The work is partially supported by NSF CAREER award DMS-1454342 (BG) and NSF Grant DMS-1308501 (VG).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, V.L., Gürel, B.Z. Hamiltonian pseudo-rotations of projective spaces. Invent. math. 214, 1081–1130 (2018). https://doi.org/10.1007/s00222-018-0818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-018-0818-9

Mathematics Subject Classification

Navigation