Skip to main content

The Weinstein conjecture and theorems of nearby and almost existence

  • Chapter
The Breadth of Symplectic and Poisson Geometry

Part of the book series: Progress in Mathematics ((PM,volume 232))

Abstract

The Weinstein conjecture, as the general existence problem for periodic orbits of Hamiltonian or Reeb flows, has been among the central questions in symplectic topology for over two decades and its investigation has led to understanding some fundamental properties of Hamiltonian flows.

In this paper we survey some recently developed and well-known methods of proving various particular cases of this conjecture and the closely related almost existence theorem. We also examine differentiability and continuity properties of the Hofer-Zehnder capacity function and relate these properties to the features of the underlying Hamiltonian dynamics, e.g., to the period growth.

The work is partially supported by the NSF and by the faculty research funds of the University of California at Santa Cruz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Audin and J. Lafontaine, eds., Holomorphic Curves in Symplectic Geometry, Progress in Mathematics, Vol. 117, Birkhäuser, Basel, 1994.

    Google Scholar 

  2. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, New York, Heidelberg, 1984.

    Google Scholar 

  3. P. Biran, L. Polterovich, and D. Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J., 119-1 (2003), 65–118.

    MathSciNet  Google Scholar 

  4. F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder, Compactness results in symplectic field theory, Geom. Topology, 7 (2003), 799–888.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Cieliebak, Subcritical Stein manifolds are split, preprint, 2002; math.DG/0204351.

    Google Scholar 

  6. K. Cieliebak, A. Floer, and H. Hofer, Symplectic homology II: Ageneral construction, Math. Z., 218 (1995), 103–122.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Cieliebak, A. Floer, H. Hofer, and K. Wysocki, Applications of symplectic homology II: Stability of the action spectrum, Math. Z., 223 (1996), 27–45.

    MATH  MathSciNet  Google Scholar 

  8. K. Cieliebak, V. Ginzburg, and E. Kerman, Symplectic homology and periodic orbits near symplectic submanifolds, Comment. Math. Helv., 79-3 (2004), 554–581.

    MathSciNet  Google Scholar 

  9. Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Functional Anal., Special Volume, Part II (2000), 560–673.

    Google Scholar 

  10. A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513–547.

    MATH  MathSciNet  Google Scholar 

  11. A. Floer, Witten’s complex and infinite dimensional Morse theory, J. Differential Geom., 30 (1989), 202–221.

    MathSciNet  Google Scholar 

  12. A. Floer and H. Hofer, Symplectic homology I: Open sets in ℂn, Math. Z., 215 (1994), 37–88.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Floer, H. Hofer, and D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., 80 (1995), 251–292.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Floer, H. Hofer, and C. Viterbo, The Weinstein conjecture in P × ℂl, Math. Z., 203 (1990), 469–482.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Floer, H. Hofer, and K. Wysocki, Applications of symplectic homology I: Math. Z., 217 (1994), 577–606.

    Article  MATH  MathSciNet  Google Scholar 

  16. U. Frauenfelder, V. Ginzburg, and F. Schlenk, Energy capacity inequalities via an action selector, preprint, 2004; math.DG/0402404.

    Google Scholar 

  17. U. Frauenfelder and F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds, preprint, 2003; math.SG/0303282.

    Google Scholar 

  18. D. Gatien and F. Lalonde, Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics, Duke Math. J., 102 (2000), 485–511.

    Article  MATH  MathSciNet  Google Scholar 

  19. V. L. Ginzburg, An embedding S 2n−1 → ℝ2n, 2n − 1 ≥ 7, whose Hamiltonian flow has no periodic trajectories, Internat. Math. Res. Notices, 1995-2 (1995), 83–98.

    Article  MathSciNet  Google Scholar 

  20. V. L. Ginzburg, On closed trajectories of a charge in a magnetic field. An application of symplectic geometry, in Contact and Symplectic Geometry (Cambridge, 1994), Publications of the Newton Institute, Vol. 8, Cambridge University Press, Cambridge, UK, 1996, 131–148.

    Google Scholar 

  21. V. L. Ginzburg, Asmooth counterexample to the Hamiltonian Seifert conjecture in ℝ6, Internat. Math. Res. Notices, 1997-13 (1997), 641–650.

    Article  MathSciNet  Google Scholar 

  22. V. L. Ginzburg, Hamiltonian dynamical systems without periodic orbits, in Northern California Symplectic Geometry Seminar, AMS Translations (Series 2), Vol. 196, American Mathematical Society, Providence, RI, 1999, 35–48.

    Google Scholar 

  23. V. L. Ginzburg, The Hamiltonian Seifert conjecture: Examples and open problems, in Proceedings of the 3rd European Congress of Mathematics, Barcelona, 2000, Vol. II, Progress in Mathematics, Vol. 202, Birkhäuser, Boston, 2001, 547–555.

    Google Scholar 

  24. V. L. Ginzburg and B. Z. Gürel, On the construction of a C 2-counterexample to the Hamiltonian Seifert conjecture in ℝ4, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 1–10.

    Article  MathSciNet  Google Scholar 

  25. V. L. Ginzburg and B. Z. Gürel, A C 2-smooth counterexample to the Hamiltonian Seifert conjecture in ℝ4, Ann. Math., 158 (2003), 953–976.

    MATH  Google Scholar 

  26. V. L. Ginzburg and B. Z. Gürel, Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Math. J., 123-1 (2004), 1–47.

    Google Scholar 

  27. V. L. Ginzburg and E. Kerman, Periodic orbits in magnetic fields in dimensions greater than two, in Geometry and Topology in Dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999), Contemporary Mathematics, Vol. 246, American Mathematical Society, Providence, RI, 1999, 113–121.

    Google Scholar 

  28. V. L. Ginzburg and E. Kerman, Periodic orbits of Hamiltonian flows near symplectic extrema, Pacific J. Math., 206 (2002), 69–91.

    MATH  MathSciNet  Google Scholar 

  29. U. Hamenstaedt, Examples for nonequivalence of symplectic capacities, preprint, 2002; math.SG/0209052.

    Google Scholar 

  30. M.-R. Herman, fax to Eliashberg, 1994.

    Google Scholar 

  31. M.-R. Herman, Examples of compact hypersurfaces in ℝ2p, 2p ≥ 6, with no periodic orbits, in C. Simo, ed., Hamiltonian Systems with Three or More Degrees of Freedom: Proceedings of the NATO Advanced Study Institute, S’Agaro, Spain, June 19–30, 1995, NATO Science Series C: Mathematical and Physical Sciences, Vol. 533, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1999.

    Google Scholar 

  32. M.-R. Herman, Examples de flots hamiltoniens dont aucune perturbations en topologie C n’a d’orbites périodiques sur ouvert de surfaces d’énergies, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 989–994.

    MATH  MathSciNet  Google Scholar 

  33. M.-R. Herman, Différentiabilité optimale et contre-exemples à la fermeture en topologie C des orbites récurrentes de flots hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 49–51.

    MATH  MathSciNet  Google Scholar 

  34. D. Hermann, Non-equivalence of symplectic capacities for open sets with restricted contact type boundaries, preprint, Orsay, France, 1998.

    Google Scholar 

  35. D. Hermann, Holomorphic curves and Hamiltonian systems in an open set with restricted contact-type boundary, Duke Math. J., 103 (2000), 335–374.

    Article  MATH  MathSciNet  Google Scholar 

  36. H. Hofer, Symplectic capacities, in Geometry of Low-Dimensional Manifolds 2 (Durham, 1989), London Mathematical Society Lecture Notes, Vol. 151, Cambridge University Press, Cambridge, UK, 1990, 15–34.

    Google Scholar 

  37. H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math., 114 (1993), 515–563.

    Article  MATH  MathSciNet  Google Scholar 

  38. H. Hofer, Dynamics, topology, and holomorphic curves, in Proceedings of the International Congress of Mathematicians (Berlin, 1998), Extra Vol. I, Documenta Mathematica, 1998, 255–280 (electronic).

    MathSciNet  Google Scholar 

  39. H. Hofer, Holomorphic curves and dynamics in dimension three, in Symplectic Geometry and Topology (Park City, UT, 1997), IAS/Park City Mathematics Series, Vol. 7, American Mathematical Society, Providence, RI, 1999, 35–101.

    Google Scholar 

  40. H. Hofer, Holomorphic curves and real three-dimensional dynamics, Geom. Functional Anal., Special Volume, Part II (2000), 674–704.

    Google Scholar 

  41. H. Hofer and C. Viterbo, The Weinstein conjecture in cotangent bundles and related results, Ann. Sc. Norm. Sup. Pisa Ser. IV Fasc. III, 15 (1988), 411–445.

    MATH  MathSciNet  Google Scholar 

  42. H. Hofer, C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math., 45 (1992), 583–622.

    Article  MATH  MathSciNet  Google Scholar 

  43. H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math., 90 (1987), 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  44. H. Hofer and E. Zehnder, Anew capacity for symplectic manifolds, in P. Rabinowitz and E. Zehnder, eds., Analysis, et Cetera, Academic Press, Boston, 1990, 405–427.

    Google Scholar 

  45. H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts, Birkhäuser, Basel, 1994.

    MATH  Google Scholar 

  46. M.Y. Jiang, Periodic solutions of Hamiltonian systems on hypersurfaces in a torus, Manuscripta Math., 85 (1994), 307–321.

    Article  MATH  MathSciNet  Google Scholar 

  47. E. Kerman, Periodic orbits of Hamiltonian flows near symplectic critical submanifolds, Internat. Math. Res. Notices, 1999-17 (1999), 954–969.

    MathSciNet  Google Scholar 

  48. E. Kerman, New smooth counterexamples to the Hamiltonian Seifert conjecture, J. Symplectic Geom., 1 (2002), 253–267.

    MATH  MathSciNet  Google Scholar 

  49. E. Kerman, Semi-local symplectic topology and some global applications, in preparation.

    Google Scholar 

  50. F. Lalonde, Energy and capacities in symplectic topology, in Geometric Topology (Athens, GA, 1993), AMS/IPStudies in Advanced Mathematics, Vol. 2.1, American Mathematical Society, Providence, RI, 1997, 328–374.

    Google Scholar 

  51. F. Lalonde and D. McDuff, The geometry of symplectic energy, Ann. Math. (2), 141 (1995), 349–371.

    Article  MATH  MathSciNet  Google Scholar 

  52. F. Lalonde and D. McDuff, Hofer’s L∞-geometry: Energy and stability of Hamiltonian flows I, II: Invent. Math., 122 (1995), 1–33, 35–69; errata, Invent. Math., 123 (1996), 613.

    Article  MathSciNet  Google Scholar 

  53. F. Laudenbach, J.-C. Sikorav, Hamiltonian disjunction and limits of Lagrangian submanifolds, Internat. Math. Res. Notices 1994-1 (1994), 161–168.

    Article  MathSciNet  Google Scholar 

  54. G. Liu and G. Tian, Weinstein conjecture and GW invariants, Comm. Contemp. Math., 2 (2000), 405–459.

    MATH  MathSciNet  Google Scholar 

  55. G. Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres, Kyushu J. Math., 52 (1998), 331–351; addendum, Kyushu J. Math., 54 (2000), 181–182.

    Article  MATH  MathSciNet  Google Scholar 

  56. G. Lu, The Weinstein conjecture in the uniruled manifolds, Math. Res. Lett., 7 (2000), 383–387.

    MATH  MathSciNet  Google Scholar 

  57. G. Lu, Gromov-Witten invariants and pseudo symplectic capacities, preprint, 2001; math.SG/0103195, v.6.

    Google Scholar 

  58. G. Lu, Symplectic capacities of toric manifolds and related results, preprint, 2003; math.SG/0312483.

    Google Scholar 

  59. L. Macarini, Hofer-Zehnder capacity and Hamiltonian circle actions, Comm. Contemp. Math., (2003).

    Google Scholar 

  60. L. Macarini, Hofer-Zehnder semicapacity of cotangent bundles and symplectic submanifolds, preprint, 2003; math.SG/0303230.

    Google Scholar 

  61. L. Macarini and F. Schlenk, A refinement of the Hofer-Zehnder theorem on the existence of closed trajectories near a hypersurface, Bull. London Math. Soc., (2003).

    Google Scholar 

  62. D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford University Press, New York, 1995.

    MATH  Google Scholar 

  63. D. McDuff and D. Salamon, J-Holomorphic Curves and Quantum Cohomology, University Lecture Series, Vol. 6, American Mathematical Society, Providence, RI, 1994.

    MATH  Google Scholar 

  64. D. McDuff and J. Slimowitz, Hofer-Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol., 5 (2001), 799–830 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  65. J. Moser, Periodic orbits near equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math., 29 (1976), 727–747.

    Article  MATH  Google Scholar 

  66. I. P. Natanson, Theory of Functions of a Real Variable, Frederick Ungar Publishing Company, New York, 1955.

    Google Scholar 

  67. E. Neduv, Prescribed minimal period problems for convex Hamiltonian systems via Hofer-Zehnder symplectic capacity, Math. Z., 236 (2001), 99–112.

    Article  MATH  MathSciNet  Google Scholar 

  68. Y.-G. Oh, Symplectic topology as the geometry of action functional I: Relative Floer theory on the cotangent bundle, J. Differential Geom., 46 (1997), 499–577.

    MATH  MathSciNet  Google Scholar 

  69. Y.-G. Oh, Symplectic topology as the geometry of action functional II: Pants product and cohomological invariants, Comm. Anal. Geom., 7 (1999), 1–54.

    MATH  MathSciNet  Google Scholar 

  70. Y.-G. Oh, Mini-max theory, spectral invariants and geometry of the Hamiltonian diffeomorphism group, preprint, 2002; math.SG/0206092.

    Google Scholar 

  71. L. Polterovich, Anobstacle to non-Lagrangian intersections, in H. Hofer, C. Taubes, A. Weinstein, and E. Zehnder, eds., The Floer Memorial Volume, Progress in Mathematics, Vol. 133, Birkhäuser, Basel, 1995, 575–586.

    Google Scholar 

  72. L. Polterovich, Geometry on the group of Hamiltonian diffeomorphisms, in Proceedings of the International Congress of Mathematicians (Berlin, 1998), Extra Vol. II, Documenta Mathematica, 1998, 401–410 (electronic).

    MathSciNet  Google Scholar 

  73. L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2001.

    Google Scholar 

  74. M. Poźniak, Floer homology, Novikov rings and clean intersections, in Northern California Symplectic Geometry Seminar, AMS Translations (Series 2), Vol. 196, American Mathematical Society, Providence, RI, 1999, 119–181.

    Google Scholar 

  75. S. Piunikhin, D. Salamon, and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, in Contact and Symplectic Geometry (Cambridge, 1994), Publications of the Newton Institute, Vol. 8, Cambridge University Press, Cambridge, UK, 1996, 171–201.

    Google Scholar 

  76. P. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energy surface. J. Differential Equations, 33 (1979), 336–352.

    Article  MATH  MathSciNet  Google Scholar 

  77. D. A. Salamon, Lectures on Floer homology, in Y. Eliashberg and L. Traynor, eds., Symplectic Geometry and Topology, IAS/Park City Mathematics Series, Vol. 7, American Mathematical Society, Providence, RI, 1999, 143–230.

    Google Scholar 

  78. F. Schlenk, Applications of Hofer’s geometry to Hamiltonian dynamics, in preparation.

    Google Scholar 

  79. M. Schwarz, Morse Homology, Birkhäuser, Basel, 1993.

    MATH  Google Scholar 

  80. M. Schwarz, Cohomology Operations from S 1-Cobordisms in Floer Homology, Ph.D. thesis, Dissertation ETH 11182, Swiss Federal Institute of Technology, Zurich, 1995.

    Google Scholar 

  81. M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419–461.

    Article  MATH  MathSciNet  Google Scholar 

  82. K. F. Siburg, Symplectic capacities in two dimensions, Manuscripta Math., 78 (1993), 149–163.

    Article  MATH  MathSciNet  Google Scholar 

  83. J.-C. Sikorav, Systèmes hamiltoniens et topologie symplectique, ETS Editrice Pisa, Dipartamento di Matematica, Università di Pisa, Pisa, 1990.

    Google Scholar 

  84. M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface, Bol. Soc. Bras. Mat., 20 (1990), 49–58.

    Article  MATH  MathSciNet  Google Scholar 

  85. C. Viterbo, A proof of Weinstein’s conjecture in ℝ2n, Ann. Inst. Poincaré, Anal. Non Linéaire, 4 (1987), 337–356.

    MATH  MathSciNet  Google Scholar 

  86. C. Viterbo, Capacités symplectiques et applications (d’après Ekeland-Hofer, Gromov), Astérisque, 177–178 (1989) (Séminaire Bourbaki, Vol. 1988/89), exp. 714, 345–362.

    MathSciNet  Google Scholar 

  87. C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685–710.

    Article  MATH  MathSciNet  Google Scholar 

  88. C. Viterbo, Functors and computations in Floer homology with applications I, Geom. Functional Anal., 9 (1999), 985–1033.

    Article  MATH  MathSciNet  Google Scholar 

  89. A. Weinstein, Lagrangian submanifolds and Hamiltonian systems, Ann. Math. (2), 98 (1973), 377–410.

    MathSciNet  Google Scholar 

  90. A. Weinstein, Normal modes for non-linear Hamiltonian systems, Invent. Math., 20 (1973), 377–410.

    Article  MathSciNet  Google Scholar 

  91. A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. Math. (2), 108 (1978), 507–518.

    Article  MathSciNet  Google Scholar 

  92. A. Weinstein, On the hypotheses of Rabinowitz’ periodic orbit theorems, J. Differential Equations, 33 (1979), 353–358.

    Article  MATH  MathSciNet  Google Scholar 

  93. E. Zehnder, Remarks on periodic solutions on hypersurfaces, in P. H. Rabinowitz, A. Ambrosetti, I. Ekeland, E. J. Zehnder, eds., Periodic Solutions of Hamiltonian Systems and Related Topics, NATO Science Series C: Mathematical and Physical Sciences, Vol. 209, Reidel, Dordrecht, the Netherlands, 1987, 267–279.

    Google Scholar 

  94. V. G. Zvyagin, The set of critical values of a potential Fredholm functional, Math. Notes, 63-1 (1998), 118–120.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Alan Weinstein on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Ginzburg, V.L. (2005). The Weinstein conjecture and theorems of nearby and almost existence. In: Marsden, J.E., Ratiu, T.S. (eds) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol 232. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4419-9_6

Download citation

Publish with us

Policies and ethics