Skip to main content

Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds

  • Chapter
The Breadth of Symplectic and Poisson Geometry

Part of the book series: Progress in Mathematics ((PM,volume 232))

Abstract

In this paper, we develop a mini-max theory of the action functional over the semi-infinite cycles via the chain level Floer homology theory and construct spectral invariants of Hamiltonian paths on arbitrary, especially on nonexact and nonrational, compact symplectic manifold (M, ω). To each given time dependent Hamiltonian function H and quantum cohomology class 0 ≠ aQH*(M), we associate an invariant ρ(H; a) which varies continuously over H in the C 0-topology. This is obtained as the mini-max value over the semi-infinite cycles whose homology class is “dual” to the given quantum cohomology class a on the covering space \( \tilde \Omega _0 (M) \) of the contractible loop space Ω0(M). We call them the Novikov Floer cycles. We apply the spectral invariants to the study of Hamiltonian diffeomorphisms in sequels of this paper.

We assume that (M, ω) is strongly semipositive here, to be removed in a sequel to this paper.

This research was partially supported by the NSF grant DMS-9971446, by NSF grant DMS-9729992 at the Institute for Advanced Study, by a Vilas Associate Award at the University of Wisconsin, and by a grant of the Korean Young Scientist Prize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benci, V., and Rabinowitz, P., Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241–273.

    Article  MATH  MathSciNet  Google Scholar 

  2. Berkovich, V., Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, Vol. 33, American Mathematical Society, Providence, RI, 1990.

    Google Scholar 

  3. Chekanov, Y., Lagrangian intersections, symplectic energy and areas of holomorphic curves, Duke J. Math., 95 (1998), 213–226.

    Article  MATH  MathSciNet  Google Scholar 

  4. Entov, M., K-area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math., 146 (2001), 93–141.

    Article  MATH  MathSciNet  Google Scholar 

  5. Entov, M., Commutator length of symplectomorphisms, Comment. Math. Helv., 79-1 (2004), 58–104.

    Article  MathSciNet  Google Scholar 

  6. Entov, M., and Polterovich, L., Calabi quasimorphism and quantum homology, Internat. Math. Res. Notices, 30 (2003), 1635–1676.

    Article  MathSciNet  Google Scholar 

  7. Floer, A., Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120 (1989), 575–611.

    Article  MATH  MathSciNet  Google Scholar 

  8. Fukaya, K., and Oh, Y.-G., Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math., 1 (1997), 96–180.

    MATH  MathSciNet  Google Scholar 

  9. Fukaya, K., and Oh, Y.-G., in preparation.

    Google Scholar 

  10. Fukaya, K., Oh, Y.-G., Ohta, H., and Ono, K., Lagrangian Intersection Floer Theory: Anomaly and Obstruction, preprint, Kyoto University, Kyoto, 2000.

    Google Scholar 

  11. Fukaya, K., and Ono, K., Arnold conjecture and Gromov-Witten invariants, Topology, 38 (1999), 933–1048.

    Article  MATH  MathSciNet  Google Scholar 

  12. Gromov, M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math., 82 (1985), 307–347.

    Article  MATH  MathSciNet  Google Scholar 

  13. Guillemin, V., Lerman, E., and Sternberg, S., Symplectic Fibrations and Multiplicity Diagrams, Cambridge University Press, Cambridge, UK, 1996.

    MATH  Google Scholar 

  14. Harvey, F., and Lawson, B., Finite volume flows and Morse theory, Ann. Math., 153 (2001), 1–25.

    Article  MATH  MathSciNet  Google Scholar 

  15. Hofer, H., On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh, 115 (1990), 25–38.

    MathSciNet  MATH  Google Scholar 

  16. Hofer, H., and Salamon, D., Floer homology and Novikov rings, in Hofer, H., Taubes, C., Weinstein, A., and Zehnder, E., eds., The Floer Memorial Volume, Progress in Mathematics, Vol. 133, Birkhäuser, Basel, 1995, 483–524.

    Google Scholar 

  17. Lalonde, F., and McDuff, D., The geometry of symplectic energy, Ann. Math., 141 (1995), 349–371.

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, G., and Tian, G., Floer homology and Arnold’s conjecture, J. Differential Geom., 49 (1998), 1–74.

    MATH  MathSciNet  Google Scholar 

  19. Liu, G., and Tian, G., On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sinica (English Ser.), 15-1 (1999), 53–80.

    MathSciNet  Google Scholar 

  20. Lu, G., Arnold conjecture and PSS isomorphism between Floer homology and quantum homology, preprint, 2000.

    Google Scholar 

  21. Milinković, D., On equivalence of two constructions of invariants of Lagrangian submanifolds, Pacific J. Math., 195 (2000), 371–415.

    MathSciNet  MATH  Google Scholar 

  22. Milinković, D., and Oh, Y.-G., Floer homology and stable Morse homology, J. Korean Math. Soc., 34 (1997), 1065–1087.

    MathSciNet  MATH  Google Scholar 

  23. Milinković, D., and Oh, Y.-G., Generating functions versus the action functional: Stable Morse theory versus Floer theory, in Lalonde, F., ed., Geometry, Topology, and Dynamics: Proceedings of the Workshop on Geometry, Topology, and Dynamics Held at the CRM, Université de Montréal, June 26–30, 1995, CRM Proceedings and Lecture Notes, Vol. 15, American Mathematical Society, Providence, RI, 1998, 107–125.

    Google Scholar 

  24. Oh, Y.-G., Symplectic topology as the geometry of action functional I, J. Differential Geom., 46 (1997), 499–577.

    MATH  MathSciNet  Google Scholar 

  25. Oh, Y.-G., Symplectic topology as the geometry of action functional II, Comm. Anal. Geom., 7 (1999), 1–55.

    MATH  MathSciNet  Google Scholar 

  26. Oh, Y.-G., Gromov-Floer theory and disjunction energy of compact Lagrangian embeddings, Math. Rec. Lett., 4 (1997), 895–905.

    MATH  Google Scholar 

  27. Oh, Y.-G., Chain level Floer theory and Hofer’s geometry of the Hamiltonian diffeomorphism group, Asian J. Math., 6 (2002), 579–624; erratum, 7 (2003), 447–448.

    MATH  MathSciNet  Google Scholar 

  28. Oh, Y.-G., Normalization of the Hamiltonian and the action spectrum, J. Korean Math. Soc., to appear; math.SG/0206090.

    Google Scholar 

  29. Oh, Y.-G., Mini-max theory, spectral invariants and geometry of the Hamiltonian diffeomorphism group, preprint, 2002; math.SG/0206092.

    Google Scholar 

  30. Oh, Y.-G., Spectral invariants and length minimizing property of Hamiltonian paths, Asian J. Math., to appear; math.SG/0212337.

    Google Scholar 

  31. Oh, Y.-G., Spectral invariants, analysis of the Floer moduli spaces and geometry of Hamiltonian diffeomorphisms, submitted.

    Google Scholar 

  32. Oh, Y.-G., Length minimizing property, Conley-Zehnder index and C 1-perturbation of Hamiltonian functions, submitted; math.SG/0402149.

    Google Scholar 

  33. Ostrover, Y., Acomparison of Hofer’s metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Comm. Contemp. Math., 5-5 (2003), 803–812.

    Article  MathSciNet  Google Scholar 

  34. Piunikhin, S., Salamon, D., and Schwarz, M., Symplectic Floer-Donaldson theory and quantum cohomology, in Thomas, C. B., ed., Contact and Symplectic Geometry, Publications of the Newton Institute, Vol. 8, Cambridge University Press, Cambridge, UK, 1996, 171–200.

    Google Scholar 

  35. Polterovich, L., Symplectic displacement energy for Lagrangian submanifolds, Ergodic Theory Dynam. Systems, 13 (1993), 357–367.

    Article  MATH  MathSciNet  Google Scholar 

  36. Polterovich, L., Gromov’s K-area and symplectic rigidity, Geom. Functional Anal., 6 (1996), 726–739.

    Article  MATH  MathSciNet  Google Scholar 

  37. Polterovich, L., The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2001.

    Google Scholar 

  38. Polterovich, L., private communication.

    Google Scholar 

  39. Rabinowitz, P., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157–184.

    Article  MathSciNet  Google Scholar 

  40. Ruan, Y., Virtual neighborhood and pseudo-holomorphic curves, Turkish J. Math., 23 (1999), 161–231.

    MATH  MathSciNet  Google Scholar 

  41. Schwarz, M., On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419–461.

    Article  MATH  MathSciNet  Google Scholar 

  42. Seidel, P., π 1 of symplectic diffeomorphism groups and invertibles in quantum homology rings, Geom. Functional Anal., 7 (1997), 1046–1095.

    Article  MATH  MathSciNet  Google Scholar 

  43. Viterbo, C., Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685–710.

    Article  MATH  MathSciNet  Google Scholar 

  44. Weinstein, A., graduate course, University of California at Berkeley, Berkeley, CA, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Alan Weinstein in honor of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Oh, YG. (2005). Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds. In: Marsden, J.E., Ratiu, T.S. (eds) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol 232. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4419-9_18

Download citation

Publish with us

Policies and ethics