Skip to main content
Log in

The coordination between digit forces is altered by anticipated changes in prehensile movement patterns

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Stability is the ability of a system to maintain a desired static or dynamic motor pattern. Maneuverability, on the other hand, is the ability to transition between motor patterns, and it is antagonistic to stability. Animals frequently reduce the stability of an ongoing task to facilitate anticipated movement transitions. Such stability–maneuverability tradeoffs are observed in human locomotion. However, the notion applies to other behaviors and this paper reports the first study on the stability–maneuverability tradeoff in human prehension. We tested if the coordination between the digit forces during the manipulation of a hand-held object is altered in response to an expected change in the manipulation pattern. We focused on the coupling between the grip and the load force and between the opposing forces exerted by the thumb and the four fingers, and on the transition from rhythmic vertical oscillation to non-vertical oscillation of the object. The nature of these couplings depends on the oscillation direction. Therefore, the stability–maneuverability tradeoff predicts that an expected volitional change to the object’s movement will diminish the strength of these couplings so that the force patterns generating the current movement can efficiently transition into new ones that generate the new movement. The strength of the grip–load coupling did not alter in tasks that required a change in movement compared to tasks that did not. We speculate that participants preferred safety over maneuverability and maintained the grip–load coupling strength to counter high inertial loads and avoid object slip. In contrast, the strength of the coupling between the thumb and the four fingers’ opposing forces reduced in tasks that required a change in movement compared to tasks that did not. Thus, the stability-reduction aspect of the stability–maneuverability tradeoff occurs in prehensile behavior. Future work should focus on associating the reduction in stability with gains in maneuverability, and on developing a comprehensive account of this tradeoff in prehensile tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Ambike.

Additional information

Communicated by Francesco Lacquaniti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, A., Ambike, S. The coordination between digit forces is altered by anticipated changes in prehensile movement patterns. Exp Brain Res 238, 1145–1156 (2020). https://doi.org/10.1007/s00221-020-05783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05783-1

Keywords

Navigation