Skip to main content
Log in

Grip forces during object manipulation: experiment, mathematical model, and validation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz) and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force changes during movements along complex trajectories can be represented as the sum of effects of two basic commands associated with the parallel and orthogonal manipulation, respectively; (b) different central commands are sent to the thumb and virtual finger (Vf—four fingers combined). The model predicted the actual normal forces with a total variance accounted for of better than 98%. The effects of the two components of acceleration—along the normal axis and the resultant acceleration within the shear plane—on the digit normal forces are additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamovich SV, Feldman AG (1984) A model of central regulation of movement parameters. Biofizika 29(2):306–309

    PubMed  CAS  Google Scholar 

  • Aoki T, Niu X, Latash ML, Zatsiorsky VM (2006) Effects of friction at the digit-object interface on the digit forces in multi-finger prehension. Exp Brain Res 172(4):425–438

    Article  PubMed  Google Scholar 

  • Aoki T, Latash ML, Zatsiorsky VM (2007) Adjustments to local friction in multifinger prehension. J Mot Behav 39(4):276–290

    Article  PubMed  Google Scholar 

  • Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. Exp Brain Res Suppl 10:111–129

    Google Scholar 

  • Cole KJ, Johansson RS (1993) Friction at the digit-object interface scales the sensorimotor transformation for grip responses to pulling loads. Exp Brain Res 95(3):523–532

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG (1966) Functional tuning of nervous system with control of movement or maintenance of a steady posture. 2. Controllable parameters of muscles. Biophys-Ussr 11(3):565–578

    Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (lambda model) for motor control. J Mot Behav 18(1):17–54

    PubMed  CAS  Google Scholar 

  • Feldman AG, Levin MF (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18(4):723–744

    Article  Google Scholar 

  • Feldman AG, Levin MF (2009) The equilibrium-point hypothesis–past, present and future. Adv Exp Med Biol 629(7):699–726

    Article  PubMed  Google Scholar 

  • Flanagan JR, Tresilian JR (1994) Grip-load force coupling: a general control strategy for transporting objects. J Exp Psychol Hum Percept Perform 20(5):944–957

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95(1):131–143

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1995) The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp Brain Res 105(3):455–464

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Tresilian J, Wing AM (1993) Coupling of grip force and load force during arm movements with grasped objects. Neurosci Lett 152(1–2):53–56

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM, Allison S, Spenceley A (1995) Effects of surface texture on weight perception when lifting objects with a precision grip. Percept Psychophys 57(3):282–290

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Latash ML, Zatsiorsky VM (2005) Internal forces during object manipulation. Exp Brain Res 165(1):69–83

    Article  PubMed  Google Scholar 

  • Gao F, Latash ML, Zatsiorsky VM (2006) Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system. Exp Brain Res 169(4):519–531

    Article  PubMed  Google Scholar 

  • Gao F, Latash ML, Zatsiorsky VM (2007) Similar motion of a hand-held object may trigger nonsimilar grip force adjustments. J Hand Ther 20(4):300–307

    Article  PubMed  Google Scholar 

  • Glezer VD, Gauzelman VE (1997) Linear and nonlinear properties of simple cells of the striate cortex of the cat: two types of nonlinearity. Exp Brain Res 117(2):281–291

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST (2010) The cognitive neuroscience of prehension: recent developments. Exp Brain Res 204(4):475–491

    Article  PubMed  Google Scholar 

  • Gysin P, Kaminski TR, Gordon AM (2003) Coordination of fingertip forces in object transport during locomotion. Exp Brain Res 149(3):371–379

    PubMed  Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16(3):235–254

    PubMed  CAS  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18(7):314–320

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M, Paulignan Y, Weiss P (1998) Grasping an object: one movement, several components. Novartis Found Symp 218:5–16

    PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic-control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56(3):550–564

    Article  PubMed  CAS  Google Scholar 

  • Kerr J, Roth B (1986) Analysis of multifingered hands. Int J Robot Res 4(4):3–17

    Article  Google Scholar 

  • Kinoshita H, Kawai S, Ikuta K, Teraoka T (1996) Individual finger forces acting on a grasped object during shaking actions. Ergonomics 39(2):243–256

    Article  PubMed  CAS  Google Scholar 

  • Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. J Neurophysiol 76(5):3524–3534

    PubMed  CAS  Google Scholar 

  • Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14(3):294–322

    Google Scholar 

  • Latash ML, Friedman J, Kim SW, Feldman AG, Zatsiorsky VM (2010) Prehension synergies and control with referent hand configurations. Exp Brain Res 202(1):213–229

    Article  PubMed  Google Scholar 

  • Li ZM, Latash ML, Zatsiorsky VM (1998) Force sharing among fingers as a model of the redundancy problem. Exp Brain Res 119(3):276–286

    Article  PubMed  CAS  Google Scholar 

  • Murray RM, Li Z, Sastry S (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    Google Scholar 

  • Pataky TC, Latash ML, Zatsiorsky VM (2004a) Prehension synergies during nonvertical grasping, I: experimental observations. Biol Cybern 91(3):148–158

    Article  PubMed  Google Scholar 

  • Pataky TC, Latash ML, Zatsiorsky VM (2004b) Prehension synergies during nonvertical grasping, II: Modeling and optimization. Biol Cybern 91(4):231–242

    Article  PubMed  Google Scholar 

  • Pigeon P, Yahia LH, Mitnitski AB, Feldman AG (2000) Superposition of independent units of coordination during pointing movements involving the trunk with and without visual feedback. Exp Brain Res 131(3):336–349

    Article  PubMed  CAS  Google Scholar 

  • Pilon JF, De Serres SJ, Feldman AG (2007) Threshold position control of arm movement with anticipatory increase in grip force. Exp Brain Res 181(1):49–67

    Article  PubMed  Google Scholar 

  • Ruegg DG, Bongioanni F (1989) Superposition of ballistic on steady contractions in man. Exp Brain Res 77(2):412–420

    Article  PubMed  CAS  Google Scholar 

  • Savescu AV, Latash ML, Zatsiorsky VM (2008) A technique to determine friction at the fingertips. J Appl Biomech 24(1):43–50

    PubMed  Google Scholar 

  • Shim JK, Latash ML, Zatsiorsky VM (2004) Finger coordination during moment production on a mechanically fixed object. Exp Brain Res 157(4):457–467

    Article  PubMed  Google Scholar 

  • Slijper H, Latash M (2000) The effects of instability and additional hand support on anticipatory postural adjustments in leg, trunk, and arm muscles during standing. Exp Brain Res 135(1):81–93

    Article  PubMed  CAS  Google Scholar 

  • Smeets JB, Brenner E (2001) Independent movements of the digits in grasping. Exp Brain Res 139(1):92–100

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Soechting JF (2005) Modulation of grasping forces during object transport. J Neurophysiol 93(1):137–145

    Article  PubMed  Google Scholar 

  • Yoshikawa T, Nagai K (1991) Manipulating and grasping forces in manipulation by multifingered robot hands. IEEE T Robotic Autom 7(1):67–77

    Article  Google Scholar 

  • Zatsiorsky VM, Latash ML (2004) Prehension synergies. Exerc Sport Sci Rev 32(2):75–80

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Latash ML (2008) Multifinger prehension: an overview. J Mot Behav 40(5):446–476

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Gregory RW, Latash ML (2002a) Force and torque production in static multifinger prehension: biomechanics and control. I. Biomechanics. Biol Cybern 87(1):50–57

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Gregory RW, Latash ML (2002b) Force and torque production in static multifinger prehension: biomechanics and control. II. Control. Biol Cybern 87(1):40–49

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Gao F, Latash ML (2003a) Finger force vectors in multi-finger prehension. J Biomech 36(11):1745–1749

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Gao F, Latash ML (2003b) Prehension synergies: effects of object geometry and prescribed torques. Exp Brain Res 148(1):77–87

    Article  PubMed  CAS  Google Scholar 

  • Zatsiorsky VM, Gao F, Latash ML (2005) Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects. Exp Brain Res 162(3):300–308

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Gao F, Latash ML (2006) Prehension stability: experiments with expanding and contracting handle. J Neurophysiol 95(4):2513–2529

    Article  PubMed  Google Scholar 

  • Zuo BR, Qian WH (2000) A general dynamic force distribution algorithm for multifingered grasping. IEEE T Syst Man Cy B 30(1):185–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was assisted by the design efforts of ATI Industrial Automations (Apex, NC, USA), which allowed for the reduced equipment bulk and wireless capabilities of the force data system. This work was supported in part by National Institute of Health grants AG-018751, NS-035032, AR-04856.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory P. Slota or Vladimir M. Zatsiorsky.

Additional information

This work was in part supported by the National Institutes of Health grants AG-018751, NS-035032, and AR-048563.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slota, G.P., Latash, M.L. & Zatsiorsky, V.M. Grip forces during object manipulation: experiment, mathematical model, and validation. Exp Brain Res 213, 125–139 (2011). https://doi.org/10.1007/s00221-011-2784-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2784-y

Keywords

Navigation