Skip to main content
Log in

Pro- and antisaccade task-switching: response suppression—and not vector inversion—contributes to a task-set inertia

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Alternating between different tasks represents an executive function essential to activities of daily living. In the oculomotor literature, reaction times (RT) for a ‘standard’ and stimulus-driven (SD) prosaccade (i.e., saccade to target at target onset) are increased when preceded by a ‘non-standard’ antisaccade (i.e., saccade mirror-symmetrical to target at target onset), whereas the converse switch does not elicit an RT cost. The prosaccade switch-cost has been attributed to lingering neural activity—or task-set inertia—related to the antisaccade executive demands of response suppression and vector inversion. It is, however, unclear whether response suppression and/or vector inversion contribute to the prosaccade switch-cost. Experiment 1 of the present work had participants alternate (i.e., AABB paradigm) between minimally delayed (MD) pro- and antisaccades. MD saccades require a response after target extinction and necessitate response suppression for both pro- and antisaccades—a paradigm providing a framework to determine whether vector inversion contributes to a task-set inertia. In Experiment 2, participants alternated between SD pro- and MD antisaccades—a paradigm designed to determine if a switch-cost is selectively imparted when a SD and standard response is preceded by a non-standard response. Experiment 1 showed that RTs for MD pro- and antisaccades were refractory to the preceding trial-type; that is, vector inversion did not engender a switch-cost. Experiment 2 indicated that RTs for SD prosaccades were increased when preceded by an MD antisaccade. Accordingly, response suppression engenders a task-set inertia but only for a subsequent stimulus-driven and standard response (i.e., SD prosaccade). Such a result is in line with the view that response suppression is a hallmark feature of executive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allport DA, Styles EA, Hsieh S (1994) Shifting intentional set: exploring the dynamic control of tasks. In: Umiltà C, Moscovitch M (eds) Attention and performance 15: conscious and nonconscious information processing. The MIT Press, Cambridge, pp 421–452

    Google Scholar 

  • Aponte EA, Stephan KE, Heinzle J (2019) Switch costs in inhibitory control and voluntary behaviour: a computational study of the antisaccade task. Eur J Neurosci. https://doi.org/10.1111/ejn.14435

    Article  PubMed  Google Scholar 

  • Barton JJ, Raoof M, Jameel O, Manoach DS (2006) Task-switching with antisaccades versus no-go trials: a comparison of inter-trial effects. Exp Brain Res 172:114–119

    PubMed  Google Scholar 

  • Becker W (1989) The neurobiology of saccadic eye movements. Metrics Rev Oculomot Res 3:13–67

    CAS  PubMed  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    CAS  PubMed  Google Scholar 

  • Chan JL, DeSouza JF (2013) The effects of attentional load on saccadic task switching. Exp Brain Res 227:301–309

    PubMed  Google Scholar 

  • Cherkasova MV, Manoach DS, Intriligator JM, Barton JJ (2002) Antisaccades and task-switching: interactions in controlled processing. Exp Brain Res 144:528–537

    PubMed  Google Scholar 

  • Cornelissen F, Peters E, Palmer J (2002) The Eyelink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Methods Instrum Comput 34:613–617

    PubMed  Google Scholar 

  • Dafoe JM, Armstrong IT, Munoz DP (2007) The influence of stimulus direction and eccentricity on pro- and anti-saccades in humans. Exp Brain Res 179:563–570

    PubMed  Google Scholar 

  • Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25:22–34

    PubMed  Google Scholar 

  • DeSimone JC, Weiler J, Aber GS, Heath M (2014) The unidirectional prosaccade switch-cost: correct and error antisaccades differentially influence the planning times for subsequent prosaccades. Vis Res 96C:17–24

    Google Scholar 

  • Everling S, Johnston K (2013) Control of the superior colliculus by the lateral prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 368:20130068

    PubMed  PubMed Central  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol Gen 47:381–391

    CAS  Google Scholar 

  • Gillen C, Heath M (2014) Target frequency influences antisaccade endpoint bias: evidence for perceptual averaging. Vis Res 105:151–158

    PubMed  Google Scholar 

  • Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vis Res 8:1279–1296

    Google Scholar 

  • Harris CM (1995) Does saccadic undershoot minimize saccadic flight-time? A Monte–Carlo study. Vis Res 35:691–701

    CAS  PubMed  Google Scholar 

  • Heath M, Bell J, Holroyd CB, Krigolson O (2012) Electroencephalographic evidence of vector inversion in antipointing. Exp Brain Res 221:19–26

    PubMed  Google Scholar 

  • Heath M, Hassall CD, MacLean S, Krigolson OE (2015) Event-related brain potentials during the visuomotor mental rotation task: the contingent negative variation scales to angle of rotation. Neuroscience 311:153–165

    CAS  PubMed  Google Scholar 

  • Heath M, Gillen C, Samani A (2016) Alternating between pro- and antisaccades: switch-costs manifest via decoupling the spatial relations between stimulus and response. Exp Brain Res 234:853–865

    PubMed  Google Scholar 

  • Heath M, Colino FL, Chan J, Krigolson OE (2018) Visuomotor mental rotation of a saccade: the contingent negative variation scales to the angle of rotation. Vis Res 143:82–88

    PubMed  Google Scholar 

  • Kleiner M, Brainard D, Pelli D, Ingling A, Murray R, Broussard C (2007) What's new in Psychtoolbox-3. Perception 36:1–16

    Google Scholar 

  • Knox PC, Heming De-Allie E, Wolohan FDA (2018) Probing oculomotor inhibition with the minimally delayed oculomotor response task. Exp Brain Res 236:2867–2876

    PubMed  PubMed Central  Google Scholar 

  • Lakens D (2017) Equivalence tests: a practical primer for t-tests, correlations, and meta-analyses. Soc Psychol Personal Sci 8:355–362

    PubMed  PubMed Central  Google Scholar 

  • Li L, Wang M, Zhao QJ, Fogelson N (2012) Neural mechanisms underlying the cost of task switching: an ERP study. PLoS One 7:e42233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manoach DS, Thakkar KN, Cain MS, Polli FE, Edelman JA, Fischl B, Barton JJ (2007) Neural activity is modulated by trial history: a functional magnetic resonance imaging study of the effects of a previous antisaccade. J Neurosci 27:1791–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moon SY, Barton JJ, Mikulski S, Polli FE, Cain MS, Vangel M, Hämäläinen MS, Manoach DS (2007) Where left becomes right: a magnetoencephalographic study of sensorimotor transformation for antisaccades. Neuroimage 36:1313–1323

    PubMed  PubMed Central  Google Scholar 

  • Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228

    CAS  PubMed  Google Scholar 

  • Perugini M, Gallucci M, Costantini G (2014) Safeguard power as a protection against imprecise power estimates. Perspect Psychol Sci 9:319–332

    PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Rivaud S, Gaymard B, Müri R, Vermersch AI (1995) Cortical control of saccades. Ann Neurol 37:557–567

    CAS  PubMed  Google Scholar 

  • Pouget P, Logan GD, Palmeri TJ, Boucher L, Paré M, Schall JD (2011) Neural basis of adaptive response time adjustment during saccade countermanding. J Neurosci 31:12604–12612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers RD, Monsell S (1995) Costs of a predictable switch between simple cognitive tasks. J Exp Psychol Gen 124:207–231

    Google Scholar 

  • Tari B, Fadel MA, Heath M (2019) Response suppression produces a switch-cost for spatially compatible saccades. Exp Brain Res 237:1195–1203

    PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2008) Response inhibition in the stop-signal paradigm. Trends Cogn Sci 12:418–424

    PubMed  PubMed Central  Google Scholar 

  • Weiler J, Heath M (2012a) The prior-antisaccade effect influences the planning and online control of prosaccades. Exp Brain Res 216:545–552

    PubMed  Google Scholar 

  • Weiler J, Heath M (2012b) Task-switching in oculomotor control: unidirectional switch-cost when alternating between pro- and antisaccades. Neurosci Lett 530:150–154

    CAS  PubMed  Google Scholar 

  • Weiler J, Heath M (2014a) Oculomotor task switching: alternating from a nonstandard to a standard response yields the unidirectional prosaccade switch-cost. J Neurophysiol 112:2176–2184

    PubMed  Google Scholar 

  • Weiler J, Heath M (2014b) Repetitive antisaccade execution does not increase the unidirectional prosaccade switch-cost. Acta Psychol (Amst) 146:67–72

    Google Scholar 

  • Weiler J, Hassall CD, Krigolson OE, Heath M (2015) The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control. Behav Brain Res 278:323–329

    PubMed  Google Scholar 

  • Wenban-Smith MG, Findlay JM (1991) Express saccades: is there a separate population in humans? Exp Brain Res 87:218–222

    CAS  PubMed  Google Scholar 

  • Wolohan FDA, Knox PC (2014) Oculomotor inhibitory control in express saccade makers. Exp Brain Res 232:3949–3963

    PubMed  Google Scholar 

  • Wurtz RH, Albano JE (1980) Visual-motor function of the primate superior colliculus. Annu Rev Neurosci 3:189–226

    CAS  PubMed  Google Scholar 

  • Wylie GR, Sumowski JF, Murray M (2011) Are there control processes, and (if so) can they be studied? Psychol Res 75:535–543

    PubMed  Google Scholar 

  • Yeung N, Nystrom LE, Aronson JA, Cohen JD (2006) Between-task competition and cognitive control in task switching. J Neurosci 26:1429–1438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Barash S (2000) Neuronal switching of sensorimotor transformations for antisaccades. Nature 408:971–975

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada, and Faculty Scholar and Major Academic Development Fund Awards from the University of Western Ontario. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Heath.

Additional information

Communicated by Melvyn A. Goodale.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tari, B., Heath, M. Pro- and antisaccade task-switching: response suppression—and not vector inversion—contributes to a task-set inertia. Exp Brain Res 237, 3475–3484 (2019). https://doi.org/10.1007/s00221-019-05686-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05686-w

Keywords

Navigation