Skip to main content
Log in

Emotion moderates the association between HTR2A (rs6313) genotype and antisaccade latency

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The serotonin system is heavily involved in cognitive and emotional control processes. Previous work has typically investigated this system’s role in control processes separately for cognitive and emotional domains, yet it has become clear the two are linked. The present study, therefore, examined whether variation in a serotonin receptor gene (HTR2A, rs6313) moderated effects of emotion on inhibitory control. An emotional antisaccade task was used in which participants looked toward (prosaccade) or away (antisaccade) from a target presented to the left or right of a happy, angry, or neutral face. Overall, antisaccade latencies were slower for rs6313 C allele homozygotes than T allele carriers, with no effect of genotype on prosaccade latencies. Thus, C allele homozygotes showed relatively weak inhibitory control but intact reflexive control. Importantly, the emotional stimulus was either present during target presentation (overlap trials) or absent (gap trials). The gap effect (slowed latency in overlap versus gap trials) in antisaccade trials was larger with angry versus neutral faces in C allele homozygotes. This impairing effect of negative valence on inhibitory control was larger in C allele homozygotes than T allele carriers, suggesting that angry faces disrupted/competed with the control processes needed to generate an antisaccade to a greater degree in these individuals. The genotype difference in the negative valence effect on antisaccade latency was attenuated when trial N-1 was an antisaccade, indicating top-down regulation of emotional influence. This effect was reduced in C/C versus T/_ individuals, suggesting a weaker capacity to downregulate emotional processing of task-irrelevant stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Emotional face stimuli were selected from the NimStim set of facial expressions (Tottenham et al. 2009). Model IDs were the following: happy (01F_HA_O), angry (01F_AN_O), neutral (01F_NE_C).

  2. Latency models were estimated within SAS PROC MIXED using restricted maximum likelihood estimation and Satterthwaite denominator degrees of freedom. The latency model included random intercepts for mean differences between subjects, −2ΔLL(1) = 798.0, p < .001, and between trials, −2ΔLL(1) = 30.1, p < .001, as well as random slopes for mean differences across subjects in the effects saccade, −2ΔLL(2) = 577.7, p < .001, gap, −2ΔLL(3) = 130.2, p < .001, and their interaction, −2ΔLL(5) = 126.3, p < .001. Given that accuracy is a dichotomous outcome (correct or incorrect saccade), for analysis of errors, a generalized linear function modeling the logit of the probability of an errant saccade was selected. Parameter estimates, therefore, are on a logit scale, which is unbounded and symmetric around zero. A logit of zero means that a saccade was equally likely to be incorrect as correct—i.e., a logit of zero is equivalent to a probability p of .50, where p = exp(logit)/(1 + exp(logit)). To facilitate interpretation, we transformed the mean logit of an error in each condition back onto the probability scale for plotting purposes (Fig. 2) using the equation above. Error models were estimated within SAS PROC GLIMMIX using pseudo-maximum likelihood estimation and Satterthwaite denominator degrees of freedom. The model included random intercepts for mean differences between subjects, −2ΔLL(1) = 2133.9, p < .001, and trials, −2ΔLL(1) = 84.7, p < .001, as well as random slopes for mean differences between subjects in the effects saccade, −2ΔLL(2) = 824.1, p < .001, and gap, −2ΔLL(3) = 135.4, p < .001.

References

  • Anokhin AP, Golosheykin S, Heath AC (2010) Heritability of individual differences in cortical processing of facial affect. Behav Genet 40:178–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Aznar S, Klein AB (2013) Regulating prefrontal cortex activation: an emerging role for the 5-HT2A serotonin receptor in the modulation of emotional-based actions? Mol Neurobiol 48:841–853

    Article  CAS  PubMed  Google Scholar 

  • Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59:390–412

    Article  Google Scholar 

  • Barr DJ, Levy R, Scheepers C, Tily HJ (2013) Random effects structure for confirmatory hypothesis testing: keep it maximal. J Mem Lang 68:255–278

    Article  Google Scholar 

  • Baumeister RF, Bratslavsky E, Finkenauer C, Vohs KD (2001) Bad is stronger than good. Rev Gen Psychol 5:323–370

    Article  Google Scholar 

  • Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36:431–432

    Article  CAS  PubMed  Google Scholar 

  • Bigos KL, Pollock BG, Aizenstein HJ, Fisher PM, Bies RR, Hariri AR (2008) Acute 5-HT reuptake blockade potentiates human amygdala reactivity. Neuropsychopharmacology 33:3221–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop S, Duncan J, Lawrence A (2004) Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci 7:184–188

    Article  CAS  PubMed  Google Scholar 

  • Bjork JM, Moeller FG, Dougherty DM, Swann AC, Machado MA, Hanis CL (2002) Serotonin 2a receptor T102C polymorphism and impaired impulse control. Am J Med Genet B 114:336–339

    Article  Google Scholar 

  • Blair KS, Smith BW, Mitchell DGV, Morton J, Vythilingam M, Pessoa L, Blair RJ (2007) Modulation of emotion by cognition and cognition by emotion. NeuroImage 35:430–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blier P, de Montigny D (1999) Serotonin and drug-induced therapeutic responses in major depression, obsessive–compulsive and panic disorders. Neuropsychopharmacology 21:91S–98S

    Article  CAS  PubMed  Google Scholar 

  • Buckholtz JW, Callicott JH, Kolachana B, Hariri AR, Goldberg TE, Genderson M et al (2008) Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality. Mol Psychiatry 13:313–324

    Article  CAS  PubMed  Google Scholar 

  • Coccaro EF (1989) Central serotonin and impulsive aggression. Br J Psychiatry 8:52–62

    Google Scholar 

  • Cohen N, Henik A (2012) Do irrelevant emotional stimuli impair or improve executive control? Front Integr Neurosci 6:461–464. doi:10.3389/fnint.2012.00033

    Article  Google Scholar 

  • Cohen N, Henik A, Mor N (2011) Can emotion modulate attention? Evidence for reciprocal links in the attentional network test. Exp Psychol 58:171–179

    Article  PubMed  Google Scholar 

  • Cools R, Roberts AC, Robbins TW (2008) Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci 12:31–40

    Article  PubMed  Google Scholar 

  • Crosbie J, Arnold P, Paterson A, Swanson J, Dupuis A, Li X et al (2013) Response inhibition and ADHD traits: correlates and heritability in a community sample. J Abnorm Child Psychol 41:497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis TA, Chen C-C, McCandliss BD (2008) Threat-related attentional biases: an analysis of three attention systems. Depress Anxiety 25:1–10

    Article  Google Scholar 

  • Depue RA, Lenzenweger MF (2001) A neurobehavioral dimensional model. In: Livesley WJ (ed) Handbook of personality disorders: theory, research, and treatment. Guilford Press, New York, pp 136–176

    Google Scholar 

  • Derryberry D, Tucker DM (1994) Motivating the focus of attention. In: Niedenthal PM, Kitayama S (eds) The heart’s eye: emotional influences in perception and attention. Academic Press, San Diego, pp 167–196

    Chapter  Google Scholar 

  • Dwivedi Y, Pandey GN (1998) Quantitation of 5-HT2A receptor mRNA in human postmortem brain using competitive RT-PCR. NeuroReport 9:3761–3765

    Article  CAS  PubMed  Google Scholar 

  • Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, Kandel ER, Hirsch J (2004) Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron 44:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J (2006) Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 51:871–882

    Article  CAS  PubMed  Google Scholar 

  • Fischer B, Weber H (1993) Express saccades and visual attention. Behav Brain Sci 16:553–567

    Article  Google Scholar 

  • Fisher PM, Meltzer CC, Price JC, Coleman RL, Ziolko SK, Moses-Kolko EL, Berga SL, Hariri AR (2009) Medial prefrontal cortex 5-HT2A density is correlated with amygdala reactivity, response habituation, and functional coupling. Cereb Cortex 19:2499–2507

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher PM, Price JC, Meltzer CC, Moses-Kolko EL, Becker C, Berga SL, Hariri AR (2011) Medial prefrontal cortex serotonin 1A and 2A receptor binding interacts to predict threat-related amygdala reactivity. Biol Mood Anxiety Disord 1:11

    Article  Google Scholar 

  • Gong P, Li J, Wang J, Lei X, Chen D, Zhang K et al (2011) Variations in 5-HT2A influence spatial cognitive abilities and working memory. Can J Neurol Sci 38:303–308

    Article  PubMed  Google Scholar 

  • Gray J (1987) The neuropsychology of emotion and personality. In: Stahl SM, Iversen SD, Goodman EC (eds) Cognitive neurochemistry. Oxford University Press, Oxford, pp 171–190

    Google Scholar 

  • Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ et al (2011) Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 168:930–946

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vis Res 18:1279–1296

    Article  CAS  PubMed  Google Scholar 

  • Hansen CH, Hansen RD (1988) Finding the face in the crowd: an anger superiority effect. J Pers Soc Psychol 54:917–924

    Article  CAS  PubMed  Google Scholar 

  • Hariri A, Bookheimer S, Mazziotta J (2000) Modulating emotional responses: effects of a neocortical network on the limbic system. NeuroReport 11:43–48

    Article  CAS  PubMed  Google Scholar 

  • Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, Weinberger DR (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–403

    Article  CAS  PubMed  Google Scholar 

  • Hariri A, Drabant EM, Weinberger DR (2006) Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol Psychiatry 59:888–897

    Article  CAS  PubMed  Google Scholar 

  • Hart SJ, Green SR, Casp M, Belger A (2010) Emotional priming effects during Stroop task performance. NeuroImage 49:2662–2670

    Article  PubMed  Google Scholar 

  • Hoffman L (2014) Longitudinal analysis: modeling within-person fluctuation and change. Routledge Academic, New York

    Google Scholar 

  • Holmes A (2008) Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev 32:1293–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurlemann R, Schlaepfer TE, Matusch A, Reich H, Shah NJ, Zilles K, Maier W, Bauer A (2009) Reduced 5-HT2A receptor signaling following selective bilateral amygdala damage. Soc Cogn Affect Neurosci 4:79–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalanthroff E, Cohen N, Henik A (2013) Stop feeling: inhibition of emotional interference following stop-signal trials. Front Hum Neurosci 7:341–347. doi:10.3389/fnhum.2013.00078

    Article  Google Scholar 

  • Kanske P (2012) On the influence of emotion on conflict processing. Front Integr Neurosci 6:457–460. doi:10.3389/fnint.2012.00042

    Article  Google Scholar 

  • Lane H-Y, Liu Y-C, Huang C-L, Hsieh C-L, Chang Y-L, Chang L, Chang Y-C, Chang W-H (2008) Prefrontal executive function and D1, D3, 5-HT2A and 5-HT6 receptor gene variations in healthy adults. J Psychiatry Neurosci 33:47–53

    PubMed  PubMed Central  Google Scholar 

  • Liberzon I, Taylor S, Fig L, Decker L, Koeppe R, Minoshima S (2000) Limbic activation and psychophysiologic responses to aversive visual stimuli: interaction with cognitive task. Neuropsychopharmacology 23:508–516

    Article  CAS  PubMed  Google Scholar 

  • Likhtik E, Pelletier JG, Paz R, Pare D (2005) Prefrontal control of the amygdala. J Neurosci 23:7429–7437

    Article  Google Scholar 

  • Linnoila VM, Virkkunen M (1992) Aggression, suicidality, and serotonin. J Clin Psychiatry 53:46–51

    PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al (2009) Finding the missing heritability of complex diseases. Nat Rev 461:747–753

    CAS  Google Scholar 

  • Mills M, Smith KB, Hibbing JR, Dodd MD (2014) The politics of the face-in-the-crowd. J Exp Psychol Gen 143:1199–1213

    Article  PubMed  Google Scholar 

  • Mitchell D, Luo Q, Mondillo K, Vythilingam M, Finger E, Blair R (2008) The interference of operant task performance by emotional distracters: an antagonistic relationship between the amygdala and frontoparietal cortices. NeuroImage 40:859–868

    Article  CAS  PubMed  Google Scholar 

  • Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology 163:42–53

    Article  CAS  PubMed  Google Scholar 

  • Öhman A, Mineka S (2001) Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol Rev 108:483–522

    Article  PubMed  Google Scholar 

  • Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Article  CAS  PubMed  Google Scholar 

  • Padmala S, Bauer A, Pessoa L (2011) Negative emotion impairs conflict-driven executive control. Front Psychol 2:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Passetti F, Dalley J, Robbins T (2003) Double dissociation of serotonergic and dopaminergic mechanisms on attentional performance using a rodent five-choice reaction time task. Psychopharmacology 165:136–145

    CAS  PubMed  Google Scholar 

  • Pessoa L (2009) How do emotion and motivation direct executive control? Trends Cogn Sci 13:160–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Pessoa L, Padmala S, Kenzer A, Bauer A (2012) Interactions between cognition and emotion during response inhibition. Emotion 12:192–197

    Article  PubMed  Google Scholar 

  • Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS et al (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8:828–834

    Article  CAS  PubMed  Google Scholar 

  • Phelps EA, Delgado MR, Nearing KI, LeDoux JE (2004) Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43:897–905

    Article  CAS  PubMed  Google Scholar 

  • Polesskaya OO, Sokolov BP (2002) Differential expression of the “C” and “T” alleles of the 5-HT2A receptor gene in the temporal cortex of normal individuals and schizophrenics. J Neurosci Res 67:812–822

    Article  CAS  PubMed  Google Scholar 

  • Quirk GJ, Likhtik E, Pelletier JG, Pare D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23:8800–8807

    CAS  PubMed  Google Scholar 

  • Sagaspe P, Schwartz S, Vuilleumier P (2011) Fear and stop: a role for the amygdala in motor inhibition by emotional signals. NeuroImage 55:1825–1835

    Article  PubMed  Google Scholar 

  • Saslow MG (1967) Effects of components of displacement-step upon latency for saccadic eye movements. J Opt Soc Am A 57:1024–1029

    Article  CAS  Google Scholar 

  • Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B et al (2005) A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry 62:273–281

    Article  PubMed  Google Scholar 

  • Smith RM, Papp AC, Webb A, Ruble CL, Munsie LM, Nisenbaum LK et al (2013) Multiple regulatory variants modulate expression of 5-Hydroxytryptamine 2A receptors in human cortex. Biol Psychiatry 73:546–554

    Article  CAS  PubMed  Google Scholar 

  • Soubrié P (1986) Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 9:319–335

    Article  Google Scholar 

  • Thakore JH, O’Keane V, Dinan TG (1996) d-Fenfluramine-induced prolactin responses in mania: evidence for serotonergic subsensitivity. Am J Psychiatry 153:1460–1463

    Article  CAS  PubMed  Google Scholar 

  • Tottenham N et al (2009) The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res 168:242–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Üҫok A, Alpsan H, Ҫakir S, Saruhan-Direskeneli G (2007) Association of a serotonin receptor 2A gene polymorphism with cognitive functions in patients with schizophrenia. Am J Med Genet B 144:704–707

    Google Scholar 

  • Van der Veen FM, Evers EAT, Deutz NEP, Schmitt JAJ (2007) Effects of acute tryptophan depletion on mood and facial emotion perception related brain activation and performance in healthy women with and without a family history or depression. Neuropsychopharmacology 32:216–224

    Article  PubMed  Google Scholar 

  • van Steenbergen H, Band GPH, Hommel B (2011) Threat but not arousal narrows attention: evidence from pupil dilation and saccade control. Front Psychol 2:239–243. doi:10.3389/fpsyg.2011.00281

    Google Scholar 

  • Verbruggen F, De Houwer J (2007) Do emotional stimuli interfere with response inhibition? Evidence from the stop signal paradigm. Cogn Emot 21:391–403

    Article  Google Scholar 

  • von dem Hagen EAH, Passamonti L, Nutland S, Sambrook J, Calder AJ (2011) The serotonin transporter gene polymorphism and the effect of baseline on amygdala response to emotional faces. Neuropsychologia 49:674–680

    Article  Google Scholar 

  • Vuilleumier P (2005) How brains beware: neural mechanisms of emotional attention. Trends Cogn Sci 9:585–594

    Article  PubMed  Google Scholar 

  • Vyas NS, Lee Y, Ahn K, Ternouth A, Stahl DR, Al-Chalabi A, Powell JF, Puri BK (2012) Association of a serotonin receptor 2A gene polymorphism with visual sustained attention in early-onset schizophrenia patients and their non-psychotic siblings. Aging Dis 3:291–300

    PubMed  PubMed Central  Google Scholar 

  • West GL, Al-Aidroos N, Susskind J, Pratt J (2011) Emotion and action: the effect of fear on saccadic performance. Exp Brain Res 209:153–158

    Article  PubMed  Google Scholar 

  • Wingen M, Kuypers KPC, Ramaekers JG (2007) The role of 5-HT1a and 5-HT2a receptors in attention and motor control: a mechanistic study in healthy volunteers. Psychopharmacology 190:391–400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a University of Nebraska-Lincoln Substance Abuse and Violence Initiative (SAVI) seed grant to S.S. and M.D. We thank Grace Sullivan for her helpful comments throughout the development of the manuscript. Correspondence may be sent to Mark Mills, the University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, USA 68588 (mark.mills2@huskers.unl.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mills.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mills, M., Wieda, O., Stoltenberg, S.F. et al. Emotion moderates the association between HTR2A (rs6313) genotype and antisaccade latency. Exp Brain Res 234, 2653–2665 (2016). https://doi.org/10.1007/s00221-016-4669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4669-6

Keywords

Navigation