Skip to main content
Log in

A Kazhdan–Lusztig Correspondence for \(L_{-\frac{3}{2}}(\mathfrak {sl}_3)\)

  • Original research
  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The abelian and monoidal structure of the category of smooth weight modules over a non-integrable affine vertex algebra of rank greater than one is an interesting, difficult and essentially wide open problem. Even conjectures are lacking. This work details and tests such a conjecture for \(L_{-\frac{3}{2}}(\mathfrak {sl}_3)\) via a logarithmic Kazhdan–Lusztig correspondence.

We first investigate the representation theory of \(\overline{\mathcal {U}}_{\textsf{i}}^H\!(\mathfrak {sl}_3)\), the unrolled restricted quantum group of \(\mathfrak {sl}_3\) at fourth root of unity. In particular, we analyse its finite-dimensional weight category, determining Loewy diagrams for all projective indecomposables and decomposing all tensor products of irreducibles. Our motivation is that this category is conjecturally braided tensor equivalent to a category of \(W^0_{\!A_2}(2)\)-modules. Here, \(W^0_{\!A_2}(2)\) is an orbifold of the octuplet vertex algebra \(W_{\!A_2}(2)\) of Semikhatov, the latter being the natural \(\mathfrak {sl}_3\)-analogue of the well known triplet algebra. Moreover, \(W^0_{\!A_2}(2)\) is the parafermionic coset of the affine vertex algebra \(L_{-\frac{3}{2}}(\mathfrak {sl}_3)\).

We formulate an explicit conjecture relating the representation theory of \(W^0_{\!A_2}(2)\) and \(\overline{\mathcal {U}}_{\textsf{i}}^H\!(\mathfrak {sl}_3)\) and work out the resulting structures of the corresponding \(L_{-\frac{3}{2}}(\mathfrak {sl}_3)\)-modules. In particular, we obtain conjectural Loewy diagrams for the latter’s projective indecomposables and decompositions for the fusion products of its irreducibles. These products coincide with those recently computed via Verlinde’s formula. Finally, we give analogous results for \(W_{\!A_2}(2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adamović, D., Creutzig, T., Genra, N.: Relaxed and logarithmic modules of \(\widehat{\mathfrak{sl}_3}\). arXiv:2110.15203 [math.RT]

  2. Adamović, D., Creutzig, T., Genra, N., Yang, J.: The vertex algebras \(\cal{R} ^{(p)}\) and \(\cal{V} ^{(p)}\). Commun. Math. Phys. 383, 1207–1241 (2021). arXiv:2001.08048 [math.RT]

    ADS  MATH  Google Scholar 

  3. Arakawa, T., Creutzig, T., Kawasetsu, K.: in preparation

  4. Auger, J., Creutzig, T., Kanade, S., Rupert, M.: Braided tensor categories related to \(\cal{B} _p\) vertex algebras. Commun. Math. Phys. 378, 219–260 (2020). arXiv:1906.07212 [math.QA]

    ADS  MATH  Google Scholar 

  5. Auger, J., Creutzig, T., Ridout, D.: Modularity of logarithmic parafermion vertex algebras. Lett. Math. Phys. 108, 2543–2587 (2018). arXiv:1704.05168 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  6. Adamović, D.: A construction of admissible \(A_1^{\left(1\right)}\)-modules of level \(-\frac{4}{3}\). J. Pure Appl. Algebra 196, 119–134 (2005). arXiv:math/0401023 [math.QA]

    MathSciNet  MATH  Google Scholar 

  7. Adamović, D.: A realization of certain modules for the \(N=4\) superconformal algebra and the affine Lie algebra \(A_2^{(1)}\). Transform. Groups 21, 299–327 (2016). arXiv:1407.1527 [math.QA]

    MathSciNet  MATH  Google Scholar 

  8. Adamović, D.: Realizations of simple affine vertex algebras and their modules: the cases \(\widehat{sl(2)}\) and \(\widehat{osp(1,2)}\). Commun. Math. Phys. 366, 1025–1067 (2019). arXiv:1711.11342 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  9. Arakawa, T., Futorny, V., Ramirez, L.: Weight representations of admissible affine vertex algebras. Commun. Math. Phys. 353, 1151–1178 (2017). arXiv:1605.07580 [math.RT]

    ADS  MathSciNet  MATH  Google Scholar 

  10. Arkhipov, S., Gaitsgory, D.: Another realization of the category of modules over the small quantum group. Adv. Math. 173, 114–143 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Andersen, H., Jantzen, J.C., Soergel, W.: Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: independence of p. Astérisque, vol. 220 (1994)

  12. Adamović, D., Kawasetsu, K., Ridout, D.: A realisation of the Bershadsky–Polyakov algebras and their relaxed modules. Lett. Math. Phys. 111, 38 (2021). arXiv:2007.00396 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  13. Adamović, D., Milas, A.: Logarithmic intertwining operators and \(W \left(2,2p--1 \right)\)-algebras. J. Math. Phys. 48, 073503 (2007). arXiv:math/0702081 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  14. Adamović, D., Milas, A.: On the triplet vertex algebra \(\cal{W} \left(p\right)\). Adv. Math. 217, 2664–2699 (2008). arXiv:0707.1857 [math.QA]

    MathSciNet  MATH  Google Scholar 

  15. Adamović, D., Milas, A.: Lattice construction of logarithmic modules for certain vertex algebras. Selecta Math. New Ser. 15, 535–561 (2009). arXiv:0902.3417 [math.QA]

    MathSciNet  MATH  Google Scholar 

  16. Adamović, D., Milas, A.: Vertex operator algebras associated to modular invariant representations of \(A_1^{\left(1\right)}\). Math. Res. Lett. 2, 563–575 (1995). arXiv:q-alg/9509025

    MathSciNet  MATH  Google Scholar 

  17. Adamović, D., Milas, A., Wang, Q.: On parafermion vertex algebras of \(\mathfrak{sl} (2)\) and \(\mathfrak{sl} (3)\) at level \(-3/2\). Comm. in Cont. Math. 24(01), 2050086 (2022). arXiv:2005.02631 [math.QA]

    MATH  Google Scholar 

  18. Adamović, D., Pedić, V.: On fusion rules and intertwining operators for the Weyl vertex algebra. J. Math. Phys. 60, 081701 (2019). arXiv:1903.10248 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  19. Arakawa, T.: Rationality of admissible affine vertex algebras in the category \(\cal{O} \). Duke Math. J. 165, 67–93 (2016). arXiv:1207.4857 [math.QA]

    MathSciNet  MATH  Google Scholar 

  20. Auger, J., Rupert, M.: On infinite order simple current extensions of vertex operator algebras. In: Vertex Algebras and Geometry, Contemporary Mathematics, vol. 711, pp. 143–168. American Mathematical Society, Providence (2018). arXiv:1711.05343 [math.CT]

  21. Allen, R., Wood, S.: Bosonic ghostbusting–the bosonic ghost vertex algebra admits a logarithmic module category with rigid fusion. Commun. Math. Physics 390, 959–1015 (2022). arXiv:2001.05986 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  22. Beck, J.: Representations of quantum groups at even roots of unity. J. Algebra 167(1), 29–56 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Beem, C., Rastelli, L.: Vertex operator algebras, Higgs branches and modular differential equations. J. High Energy Phys. 1808, 114 (2018). arXiv:1707.07679 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  24. Buican, M., Nishinaka, T.: On irregular singularity wave functions and superconformal indices. J. High Energy Phys. 2017, 066 (2017). arXiv:1705.07173 [hep-th]

    MathSciNet  MATH  Google Scholar 

  25. Creutzig, T., Dimofte, T., Garner, N., Geer, N.: A QFT for non-semisimple TQFT. arXiv:2112.01559 [hep-th]

  26. Creutzig, T., Gannon, T.: Logarithmic conformal field theory, log-modular tensor categories and modular forms. J. Phys. A50, 404004 (2017). arXiv:1605.04630 [math.QA]

    MathSciNet  MATH  Google Scholar 

  27. Creutzig, T., Genra, N., Linshaw, A.: Category \({\cal{O}}\) for vertex algebras of \(\mathfrak{osp}_{1|2n}\), arXiv:2203.08188 [math.RT]

  28. Costantino, F., Geer, N., Patureau-Mirand, B.: Quantum invariants of \(3\)-manifolds via link surgery presentations and non-semisimple categories. J. Topol. 7, 1005–1053 (2014). arXiv:1202.3553 [math.GT]

    MathSciNet  MATH  Google Scholar 

  29. Costantino, F., Geer, N., Patureau-Mirand, B.: Some remarks on the unrolled quantum group of \(\mathfrak{sl} (2)\). J. Pure Appl. Algebra 219, 3238–3262 (2015). arXiv:1406.0410 [math.QA]

    MathSciNet  MATH  Google Scholar 

  30. Creutzig, T., Gainutdinov, A., Runkel, I.: A quasi-Hopf algebra for the triplet vertex operator algebra. Commun. Contemp. Math. 22, 1950024 (2020). arXiv:1712.07260 [math.QA]

    MathSciNet  MATH  Google Scholar 

  31. Creutzig, T., Huang, Y.-Z., Yang, J.: Braided tensor categories of admissible modules for affine Lie algebras. Commun. Math. Phys. 362, 827–854 (2018). arXiv:1709.01865 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  32. Creutzig, T., Kanade, S., Linshaw, A.: Simple current extensions beyond semi-simplicity. Commun. Contemp. Math. 22, 1950001 (2020). arXiv:1511.08754 [math.QA]

    MathSciNet  MATH  Google Scholar 

  33. Creutzig, T., Kovalchuk, V., Linshaw, A.: Generalized parafermions of orthogonal type. J. Algebra 593, 178–192 (2022). arXiv:2010.02303 [math.QA]

    MathSciNet  MATH  Google Scholar 

  34. Creutzig, T., Kanade, S., Liu, T., Ridout, D.: Cosets, characters and fusion for admissible-level \(\mathfrak{osp} (1\vert 2)\) minimal models. Nucl. Phys. B 938, 22–55 (2018). arXiv:1806.09146 [hep-th]

    ADS  MATH  Google Scholar 

  35. Creutzig, T., Kanade, S., Linshaw, A., Ridout, D.: Schur-Weyl duality for Heisenberg cosets. Transform. Groups 24, 301–354 (2019). arXiv:1611.00305 [math.QA]

    MathSciNet  MATH  Google Scholar 

  36. Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions. arXiv:1705.05017 [math.QA]

  37. Creutzig, T., Kanade, S., McRae, R.: Glueing vertex algebras. Adv. Math. 396, 108174 (2022). arXiv:1906.00119 [math.QA]

    MATH  Google Scholar 

  38. Creutzig, T., Lentner, S., Rupert, M.: Characterizing braided tensor categories associated to logarithmic vertex operator algebras. arXiv:2104.13262 [math.QA]

  39. Creutzig, T., Milas, A.: False theta functions and the Verlinde formula. Adv. Math. 262, 520–545 (2014). arXiv:1309.6037 [math.QA]

    MathSciNet  MATH  Google Scholar 

  40. Creutzig, T., Milas, A.: Higher rank partial and false theta functions and representation theory. Adv. Math. 314, 203–227 (2017). arXiv:1607.08563 [math.QA]

    MathSciNet  MATH  Google Scholar 

  41. Creutzig, T., Milas, A., Rupert, M.: Logarithmic link invariants of \(\overline{U}_q^H(\mathfrak{sl} _2)\) and asymptotic dimensions of singlet vertex algebras. J. Pure Appl. Algebra 222, 3224–3247 (2018). arXiv:1605.05634 [math.QA]

  42. Creutzig, T., McRae, R., Yang, J.: Direct limit completions of vertex tensor categories. Commun. Contemp. Math. 24(02), 2150033 (2022). arXiv:2006.09711 [math.QA]

    MathSciNet  MATH  Google Scholar 

  43. Creutzig, T., McRae, R., Yang, J.: On ribbon categories for singlet vertex algebras. Commun. Math. Phys. 387, 865–925 (2021). arXiv:2007.12735 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  44. Creutzig, T., McRae, R., Yang, J.: Ribbon tensor structure on the full representation categories of the singlet vertex algebras arXiv:2202.05496v1 [math.QA]

  45. Creutzig, T., McRae, R., Yang, J.: Rigid tensor structure on big module categories for some \(W\)-(super)algebras in type \(A\). arXiv:2210.04678 [math.QA]

  46. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models I. Nucl. Phys. B 865, 83–114 (2012). arXiv:1205.6513 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  47. Creutzig, T., Ridout, D.: Logarithmic conformal field theory: beyond an introduction. J. Phys. A 46, 494006 (2013). arXiv:1303.0847 [hep-th]

    MathSciNet  MATH  Google Scholar 

  48. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875, 423–458 (2013). arXiv:1306.4388 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  49. Creutzig, T.: W-algebras for Argyres–Douglas theories. Eur. J. Math. 3 (2017). arXiv:1701.05926 [hep-th]

  50. Creutzig, T.: Logarithmic W-algebras and Argyres–Douglas theories at higher rank. J. High Energy Phys. 2018, 188 (2018). arXiv:1809.01725 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  51. Creutzig, T.: Fusion categories for affine vertex algebras at admissible levels. Selecta Math. New Ser. 25, 27 (2019). arXiv:1807.00415 [math.QA]

    MathSciNet  MATH  Google Scholar 

  52. Creutzig, T., Rupert, M.: Uprolling unrolled quantum groups. Comm. Cont. Math. 24(04), 2150023 (2022). arXiv:2005.12445 [math.RT]

    MathSciNet  MATH  Google Scholar 

  53. Creutzig, T., Ridout, D., Wood, S.: Coset constructions of logarithmic \(\left(1, p \right)\)-models. Lett. Math. Phys. 104, 553–583 (2014). arXiv:1305.2665 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  54. De Concini, C., Kac, V.: Representations of quantum groups at roots of 1. In: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory. (Paris, 1989). Progress in Mathematics, vol. 92, pp. 471–506. Birkhauser Boston (1990)

  55. De Concini, C., Kac, V.: Representations of quantum groups at roots of 1: reduction to the exceptional case. In: Infinite Analysis, Part A, B (Kyoto,1991), Advanced Series in Mathematics and Physics, vol. 16, pp. 141–149. World Science Publications, River Edge (1992)

  56. De Concini, C., Kac, V., Procesi, C.: Some remarkable degenerations of quantum groups. Commun. Math. Phys. 157, 405–427 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Feigin, B., Gainutdinov, A., Semikhatov, A., Tipunin, I.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265, 47–93 (2006). arXiv:hep-th/0504093

    ADS  MathSciNet  MATH  Google Scholar 

  58. Feigin, B., Gainutdinov, A., Semikhatov, A., Tipunin, I.: Kazhdan–Lusztig correspondence for the representation category of the triplet \(W\)-algebra in logarithmic CFT. Theoret. Math. Phys. 148, 1210–1235 (2006). arXiv:math.QA/0512621

    MathSciNet  MATH  Google Scholar 

  59. Feigin, B., Gainutdinov, A., Semikhatov, A., Tipunin, I.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006). arXiv:hep-th/0606196

  60. Feigin, B., Gainutdinov, A., Semikhatov, A., Tipunin, I.: Kazhdan–Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models. J. Math. Phys. 48, 032303 (2007). arXiv:math/0606506 [math.QA]

  61. Futorny, V., Křižka, L.: Positive energy representations of affine vertex algebras. Commun. Math. Phys. 383, 841–891 (2021). arXiv:2002.05586 [math.RT]

  62. Fehily, Z., Kawasetsu, K., Ridout, D.: Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras. Commun. Math. Phys. 385, 859–904 (2021). arXiv:2007.03917 [math.RT]

  63. Futorny, V., Morales, O., Křižka, L.: Admissible representations of simple affine vertex algebras. arXiv:2107.11128 [math.RT]

  64. Futorny, V., Morales, O., Ramirez, L.: Simple modules for affine vertex algebras in the minimal nilpotent orbit. arXiv:2002.05568 [math.RT]

  65. Feigin, B., Semikhatov, A., Tipunin, I.: Equivalence between chain categories of representations of affine \(sl(2)\) and \(N=2\) superconformal algebras. J. Math. Phys. 39, 3865–3905 (1998). arXiv:hep-th/9701043

    ADS  MathSciNet  MATH  Google Scholar 

  66. Futorny, V., Tsylke, A.: Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine Lie algebras. J. Algebra 238, 426–441 (2001)

    MathSciNet  MATH  Google Scholar 

  67. Feigin, B., Tipunin, I.: Logarithmic CFTs connected with simple Lie algebras. arXiv:1002.5047 [math.QA]

  68. Gaberdiel, M.: Fusion rules and logarithmic representations of a WZW model at fractional level. Nucl. Phys. B 618, 407–436 (2001). arXiv:hep-th/0105046

    ADS  MathSciNet  MATH  Google Scholar 

  69. Gannon, T., Negron, C.: Quantum \(SL(2)\) and logarithmic vertex operator algebras at \((p,1)\)-central charge. arXiv:2104.12821 [math.QA]

  70. Geer, N., Patureau-Mirand, B.: Topological invariants from nonrestricted quantum groups. Algebr. Geom. Topol. 13, 3305–3363 (2013). arXiv:1009.4120 [math.GT]

    MathSciNet  MATH  Google Scholar 

  71. Geer, N., Patureau-Mirand, B., Virelizier, A.: Traces on ideals in pivotal categories. Quantum Topol. 4, 91–124 (2013). arXiv:1103.1660 [math.QA]

    MathSciNet  MATH  Google Scholar 

  72. Gainutdinov, A., Runkel, I.: Symplectic fermions and a quasi-Hopf algebra structure on \({\overline{U}}_{ i } s\ell (2)\). J. Algebra 476, 415–458 (2017). arXiv:1503.07695 [math.QA]

    MathSciNet  MATH  Google Scholar 

  73. Gainutdinov, A., Runkel, I.: The non-semisimple Verlinde formula and pseudo-trace functions. J. Pure Appl. Algebra 223, 660–690 (2019). arXiv:1605.04448 [math.QA]

    MathSciNet  MATH  Google Scholar 

  74. Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008). arXiv:math/0406291 [math.QA]

    MathSciNet  MATH  Google Scholar 

  75. Huang, Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10, 871–911 (2008). arXiv:math/0502533 [math.QA]

    MathSciNet  MATH  Google Scholar 

  76. Kausch, H.: Extended conformal algebras generated by a multiplet of primary fields. Phys. Lett. B 259, 448–455 (1991)

    ADS  MathSciNet  Google Scholar 

  77. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras. I. J. Am. Math. Soc. 6, 905–947 (1993)

    MathSciNet  MATH  Google Scholar 

  78. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras. II. J. Am. Math. Soc. 6, 949–1011 (1993)

    MathSciNet  MATH  Google Scholar 

  79. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras. III. J. Am. Math. Soc. 7, 335–381 (1994)

    MathSciNet  MATH  Google Scholar 

  80. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras. IV. J. Am. Math. Soc. 7, 383–453 (1994)

    MathSciNet  MATH  Google Scholar 

  81. Kawasetsu, K., Ridout, D.: Relaxed highest-weight modules I: rank \(1\) cases. Commun. Math. Phys. 368, 627–663 (2019). arXiv:1803.01989 [math.RT]

    ADS  MathSciNet  MATH  Google Scholar 

  82. Kawasetsu, K., Ridout, D.: Relaxed highest-weight modules II: classifications for affine vertex algebras. Commun. Contemp. Math. (to appear). arXiv:1906.02935 [math.RT]

  83. Kawasetsu, K., Ridout, D., Wood, S.: An admissible-level \(\mathfrak{sl}_3\) model. Lett. Math. Phys. Vol. 112, Article Number: 96 (2022). arXiv:2107.13204 [math.QA]

  84. Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to \(\mathfrak{sl} _2\). J. Algebra 330, 103–129 (2011). arXiv:0901.4221 [math.QA]

    MathSciNet  MATH  Google Scholar 

  85. Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations. Texts and Monographs in Physics. Springer, Berlin (1997)

    MATH  Google Scholar 

  86. Kac, V., Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Nat. Acad. Sci. USA 85, 4956–4960 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  87. Landrock, P.: Finite Group Algebras and Their Modules. London Mathematical Society Lecture Note Series, vol. 84. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  88. Mathieu, O.: Classification of irreducible weight modules. Ann. Inst. Fourier (Grenoble) 50, 537–592 (2000)

    MathSciNet  MATH  Google Scholar 

  89. McRae, R., Yang, J.: Structure of Virasoro tensor categories at central charge \(13-6p-6p^{-1}\) for integers \(\mathit{p} > 1\). arXiv:2011.02170 [math.QA]

  90. Nagatomo, K., Tsuchiya, A.: The triplet vertex operator algebra \(W \left( p \right)\) and the restricted quantum group \({\overline{U}}_q \left( sl_2 \right)\) at \(q = e^{\frac{\pi i}{p}}\). Adv. Stud. Pure Math. 61, 1–49 (2011). arXiv:0902.4607 [math.QA]

    MATH  Google Scholar 

  91. Perše, O.: Vertex operator algebras associated to certain admissible modules for affine Lie algebras of type \(A\). Glas. Mat. Ser. III(43), 41–57 (2008). arXiv:0707.4129 [math.QA]

    MathSciNet  MATH  Google Scholar 

  92. Ridout, D.: \(\widehat{\mathfrak{sl} } \left(2 \right)_{-1/2}\) and the triplet model. Nucl. Phys. B 835, 314–342 (2010). arXiv:1001.3960 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  93. Ridout, D.: Fusion in fractional level \(\widehat{\mathfrak{sl} } \left(2 \right)\)-theories with \(k=-\tfrac{1}{2}\). Nucl. Phys. B 848, 216–250 (2011). arXiv:1012.2905 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  94. Ridout, D., Snadden, J., Wood, S.: An admissible level \(\widehat{\mathfrak{osp} } \left(1|2 \right)\)-model: modular transformations and the Verlinde formula. Lett. Math. Phys. 108, 2363–2423 (2018). arXiv:1705.04006 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  95. Rupert, M.: Categories of weight modules for unrolled restricted quantum groups at roots of unity. Izv. RAN. Ser. Mat. 86(6), 187–206 (2022). arXiv:1910.05922 [math.RT]

    Google Scholar 

  96. Ridout, D., Wood, S.: Modular transformations and Verlinde formulae for logarithmic \(\left( p_+, p_- \right)\)-models. Nucl. Phys. B 880, 175–202 (2014). arXiv:1310.6479 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  97. Ridout, D., Wood, S.: Relaxed singular vectors, Jack symmetric functions and fractional level \(\widehat{\mathfrak{sl} } \left(2 \right)\) models. Nucl. Phys. B 894, 621–664 (2015). arXiv:1501.07318 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  98. Ridout, D., Wood, S.: Bosonic ghosts at \(c=2\) as a logarithmic CFT. Lett. Math. Phys. 105, 279–307 (2015). arXiv:1408.4185 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  99. Ridout, D., Wood, S.: The Verlinde formula in logarithmic CFT. J. Phys. Conf. Ser. 597, 012065 (2015). arXiv:1409.0670 [hep-th]

    Google Scholar 

  100. Semikhatov, A.: A note on the logarithmic \(W_3\) octuplet algebra and its Nichols algebra. arXiv:1301.2227 [math.QA]

  101. Semikhatov, A.: Virasoro central charges for Nichols algebras. In: Conformal Field Theories and Tensor Categories. Mathematical Lectures from Peking University, pp. 67–92. Springer, Heidelberg (2014). arXiv:1109.1767 [math.QA]

  102. Sugimoto, S.: On the Feigin–Tipunin conjecture. Selecta Math. New Ser. 27, 86 (2021). arXiv:2004.05769 [math.RT]

  103. Sugimoto, S.: Simplicity of higher rank triplet W-algebras. Int. Math. Res. Not. rnac189 (2022). arXiv:2105.00638 [math.RT]

  104. Tsuchiya, A., Wood, S.: On the extended \(W\)-algebra of type \(sl_2\) at positive rational level. Int. Math. Res. Not. 5357–5435, 2015 (2015). arXiv:1302.6435 [hep-th]

    Google Scholar 

  105. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360–376 (1988)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

The work of TC is supported by NSERC Grant Number RES0048511. DR’s research is supported by the Australian Research Council Discovery Projects DP160101520 and DP210101502, as well as an Australian Research Council Future Fellowship FT200100431.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Rupert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by C. Schweigert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutzig, T., Ridout, D. & Rupert, M. A Kazhdan–Lusztig Correspondence for \(L_{-\frac{3}{2}}(\mathfrak {sl}_3)\). Commun. Math. Phys. 400, 639–682 (2023). https://doi.org/10.1007/s00220-022-04602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04602-8

Navigation