Skip to main content
Log in

Smooth Perturbations of the Functional Calculus and Applications to Riemannian Geometry on Spaces of Metrics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show for a certain class of operators A and holomorphic functions f that the functional calculus \(A\mapsto f(A)\) is holomorphic. Using this result we are able to prove that fractional Laplacians \((1+\Delta ^g)^p\) depend real analytically on the metric g in suitable Sobolev topologies. As an application we obtain local well-posedness of the geodesic equation for fractional Sobolev metrics on the space of all Riemannian metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D., Kriegl, A., Losik, M., Michor, P.W.: Choosing roots of polynomials smoothly. Israel J. Math. 105, 203–233 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. In: Dafermos, C.M., Feireisl, E. (eds.) Evolutionary Equations. Handbook of Differential Equations: Evolutionary Equations, vol. I, pp. 1–85. North-Holland, Amsterdam (2004)

    MATH  Google Scholar 

  3. Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16(fasc. 1), 319–361 (1966)

  4. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.: The solution of the Kato square root problem for second order elliptic operators on \(\mathbb{R}^n\). Ann. Math. 156, 633–654 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auscher, P., Tchamitchian, P.: Square root problem for divergence operators and related topics. Astérisque (1998)

  6. Axelsson, A., Keith, S., McIntosh, A.: Quadratic estimates and functional calculi of perturbed Dirac operators. Invent. Math. 163(3), 455–497 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bandara, L.: Rough metrics on manifolds and quadratic estimates. Math. Z. 283(3–4), 1245–1281 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bandara, L.: Continuity of solutions to space-varying pointwise linear elliptic equations. Publicacions Matemàtiques 61(1), 239–258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bandara, L., McIntosh, A.: The Kato square root problem on vector bundles with generalised bounded geometry. J. Geom. Anal. 26(1), 428–462 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauer, M., Bruveris, M., Cismas, E., Escher, J., Kolev, B.: Well-posedness of the Epdiff equation with a pseudo-differential inertia operator. J. Differ. Equ. 269(1), 288–325 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vis. 50(1–2), 60–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bauer, M., Escher, J., Kolev, B.: Local and global well-posedness of the fractional order EPDiff equation on \(\mathbb{R}^d\). J. Differ. Equ. 258(6), 2010–2053 (2015)

    Article  ADS  MATH  Google Scholar 

  13. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on the manifold of all Riemannian metrics. J. Differ. Geom. 94(2), 187–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bauer, M., Harms, P., Michor, P.W.: Fractional Sobolev metrics on spaces of immersions. Calc. Var. Partial Differ. Equ. 59(2), 1–27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bauer, M., Harms, P., Preston, S.C.: Vanishing distance phenomena and the geometric approach to SQG. Arch. Ration. Mech. Anal. 235, 1445–1466 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bauer, M., Kolev, B., Preston, S.C.: Geometric investigations of a vorticity model equation. J. Differ. Equ. 260(1), 478–516 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Behzadan, A., Holst, M.: Multiplication in Sobolev spaces, revisited. arXiv:1512.07379 (2015)

  19. Behzadan, A., Holst, M.: On certain geometric operators between Sobolev spaces of sections of tensor bundles on compact manifolds equipped with rough metrics. arXiv:1704.07930 (2017)

  20. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Campbell, K.M., Dai, H., Su, Z., Bauer, M., Fletcher, P.T., Joshi, S.C.: Structural connectome atlas construction in the space of riemannian metrics. In: International Conference on Information Processing in Medical Imaging, pp. 291–303. Springer (2021)

  22. Clarke, B.: The metric geometry of the manifold of Riemannian metrics over a closed manifold. Calc. Var. Partial Differ. Equ. 39(3–4), 533–545 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Clarke, B.: The Riemannian \(L^2\) topology on the manifold of Riemannian metrics. Ann. Global Anal. Geom. 39(2), 131–163 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Clarke, B.: The completion of the manifold of Riemannian metrics. J. Differ. Geom. 93(2), 203–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Clarke, B.: Geodesics, distance, and the \(\rm CAT(0)\) property for the manifold of Riemannian metrics. Math. Z. 273(1–2), 55–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Clarke, B., Rubinstein, Y. A.: Conformal deformations of the Ebin metric and a generalized Calabi metric on the space of Riemannian metrics. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(2), 251–274 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three-dimensional vorticity equation. Commun. Pure Appl. Math. 38(6), 715–724 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Cowling, M., Doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded \(H_{\infty }\) functional calculus. J. Aust. Math. Soc. 60(1), 51–89 (1996)

    Article  MATH  Google Scholar 

  29. Denk, R., Dore, G., Hieber, M., Prüss, J., Venni, A.: New thoughts on old results of R. T. Seeley. Math. Ann. 328(4), 545–583 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160(5), 1113–1148 (1967)

    Article  ADS  MATH  Google Scholar 

  31. Ebin, D.: The manifold of Riemannian metrics. Proc. Symp. Pure Math. AMS 15, 11–40 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ebin, D.G., Misiołek, G., Preston, S.C.: Singularities of the exponential map on the volume-preserving diffeomorphism group. Geom. Funct. Anal. 16(4), 850–868 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Eichhorn, J.: Global Analysis on Open Manifolds. Nova Science Publishers Inc., New York (2007)

    MATH  Google Scholar 

  35. Escher, J., Kolev, B.: Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. J. Geom. Mech. 6(3), 335–372 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Escher, J., Kolev, B., Wunsch, M.: The geometry of a vorticity model equation. Commun. Pure Appl. Anal. 11(4), 1407–1419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fischer, A.E., Marsden, J.E.: The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I. Commun. Math. Phys. 28(1), 1–38 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Fischer, A.E., Tromba, A.J.: On a purely “Riemannian” proof of the structure and dimension of the unramified moduli space of a compact Riemann surface. Math. Ann. 267(3), 311–345 (1984)

  39. Freed, D., Groisser, D.: The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group. Mich. Math. J. 36, 323–344 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Frölicher, A., Kriegl, A.: Linear Spaces and Differentiation Theory. Pure and Applied Mathematics (New York). Wiley, Chichester (1988)

  41. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  42. Gil-Medrano, O., Michor, P.W.: The Riemannian manifold of all Riemannian metrics. Q. J. Math. Oxf. 2(42), 183–202 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gil-Medrano, O., Michor, P.W.: Geodesics on spaces of almost hermitian structures. Israel J. Math. 88, 319–332 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gil-Medrano, O., Michor, P.W., Neuwirther, M.: Pseudoriemannian metrics on spaces of bilinear structures. Q. J. Math. Oxf. 2(43), 201–221 (1992)

    Article  MATH  Google Scholar 

  45. Große, N., Schneider, C.: Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces. Math. Nachr. 286(16), 1586–1613 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Haase, M.: The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006)

  47. Holm, D.D., Marsden, J.E.: Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation. In: Marsden, J.E., Ratiu, T.S. (eds.) The Breadth of Symplectic and Poisson Geometry, pp. 203–235. Springer, Berlin (2005)

    Google Scholar 

  48. Holst, M., Nagy, G., Tsogtgerel, G.: Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions. Commun. Math. Phys. 288(2), 547–613 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Inci, H., Kappeler, T., Topalov, P.: On the regularity of the composition of diffeomorphisms. Memoirs of the American Mathematical Society. vol. 226, No. 1062, vi+60 (2013)

  50. Kalton, N., Kunstmann, P., Weis, L.: Perturbation and interpolation theorems for the \(H^\infty \)-calculus with applications to differential operators. Math. Ann. 336(4), 747–801 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kalton, N., Weis, L.: The \(H^\infty \)-Functional Calculus and Square Function Estimates. Birkhäuser (2016)

  52. Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der Mathematischen Wissenschaften, vol. 132, 2nd edn. Springer-Verlag, Berlin (1976)

    MATH  Google Scholar 

  53. Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin (1993)

    Book  MATH  Google Scholar 

  54. Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40(2), 857–868 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  56. Kriegl, A., Michor, P.W.: Differentiable perturbation of unbounded operators. Math. Ann. 327(1), 191–201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kriegl, A., Michor, P.W., Rainer, A.: Denjoy–Carleman differentiable perturbation of polynomials and unbounded operators. Integral Equ. Oper. Theory 71(3), 407–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kriegl, A., Michor, P.W., Rainer, A.: Many parameter Hölder perturbation of unbounded operators. Math. Ann. 353, 519–522 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lunardi, A.: Interpolation Theory. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), vol. 16, 3rd edn. Edizioni della Normale, Pisa (2018)

    Book  MATH  Google Scholar 

  60. McIntosh, A.: Square roots of elliptic operators. J. Funct. Anal. 61(3), 307–327 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  61. McIntosh, A.: Operators which have an \(H_\infty \) functional calculus. In Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), Proceedings of The Centre for Mathematical Analysis, Australian National University, vol. 14, pp. 210–231. Australian National University, Canberra (1986)

  62. McIntosh, A.: The square root problem for elliptic operators a survey. In: Fujita, H., Ikebe, T., Kuroda, S.T. (eds.) Functional-Analytic Methods for Partial Differential Equations, pp. 122–140. Springer, Berlin (1990)

    Chapter  Google Scholar 

  63. Michor, P.W.: Topics in Differential Geometry. Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  64. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Misiołek, G., Preston, S.C.: Fredholm properties of Riemannian exponential maps on diffeomorphism groups. Invent. Math. 179(1), 191 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Morris, A.J.: The Kato square root problem on submanifolds. J. Lond. Math. Soc. 86(3), 879–910 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Müller, O.: Applying the index theorem to non-smooth operators. J. Geom. Phys. 116, 140–145 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Müller, V.: Spectral Theory of Linear Operators: And Spectral Systems in Banach Algebras, vol. 139. Springer, Berlin (2007)

  69. Pekonen, O.: On the DeWitt metric. J. Geom. Phys. 4(4), 493–502 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Rainer, A.: Perturbation of complex polynomials and normal operators. Math. Nachr. 282(12), 1623–1636 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. Rainer, A.: Perturbation theory for normal operators. Trans. Am. Math. Soc. 365(10), 5545–5577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Rellich, F.: Störungstheorie der Spektralzerlegung, I–V. Math. Ann., 113, 116, 117, 119, (1937–1942)

  73. Rellich, F.: Perturbation Theory of Eigenvalue Problems. Assisted by J. Berkowitz. With a Preface by Jacob T. Schwartz. Gordon and Breach Science Publishers, New York (1969)

  74. Smolentsev, N.: Spaces of Riemannian metrics. J. Math. Sci. 142(5), 2436–2519 (2007). Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), vol. 31, Geometry (2005)

  75. Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics, vol. 84. Birkhäuser (1992)

  76. Werner, D.: Funktionalanalysis, 5th edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  77. Yagi, A.: Differentiability of families of the fractional powers of selfadjoint operators associated with sesquilinear forms. Osaka J. Math. 20(2), 265–284 (1983)

    MathSciNet  MATH  Google Scholar 

  78. Yagi, A.: Applications of the purely imaginary powers of operators in Hilbert spaces. J. Funct. Anal. 73(1), 216–231 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  79. Yamada, S.: Local and global aspects of Weil–Petersson geometry. Handbook of Teichmüller Theory, vol. IV, pp. 43–111 (2014)

  80. Zhang, R., Srivastava, A.: Elastic shape analysis of planar objects using tensor field representations. J. Math. Imaging Vis. 63, 1204–1221 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  81. Zolesio, J.: Multiplication dans les espaces de Besov. Proc. R. Soc. Edinb. Sect. A Math. 78(1–2), 113–117 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bauer.

Additional information

Communicated by P. Chrusciel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank Lashi Bandara, Andreas Kriegl, Peer Kunstmann, Gerard Misiolek, Marvin S. Müller, Armin Rainer, and Lutz Weis for helpful discussions. MB was partially supported by NSF-grants 1912037 and 1953244. PH was partially supported in the form of a Junior Fellowship of the Freiburg Institute of Advances Studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, M., Bruveris, M., Harms, P. et al. Smooth Perturbations of the Functional Calculus and Applications to Riemannian Geometry on Spaces of Metrics. Commun. Math. Phys. 389, 899–931 (2022). https://doi.org/10.1007/s00220-021-04264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04264-y

Navigation