Skip to main content
Log in

Overview of the Geometries of Shape Spaces and Diffeomorphism Groups

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This article provides an overview of various notions of shape spaces, including the space of parametrized and unparametrized curves, the space of immersions, the diffeomorphism group and the space of Riemannian metrics. We discuss the Riemannian metrics that can be defined thereon, and what is known about the properties of these metrics. We put particular emphasis on the induced geodesic distance, the geodesic equation and its well-posedness, geodesic and metric completeness and properties of the curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alekseevsky, D., Kriegl, A., Losik, M., Michor, P.W.: The Riemannian geometry of orbit spaces—the metric, geodesics, and integrable systems. Publ. Math. (Debr.) 62(3–4), 247–276 (2003). Dedicated to Professor Lajos Tamássy on the occasion of his 80th birthday

    MATH  MathSciNet  Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    MATH  MathSciNet  Google Scholar 

  3. Bauer, M.: Almost local metrics on shape space of surfaces. PhD thesis, University of Vienna (2010)

  4. Bauer, M., Bruveris, M.: A new Riemannian setting for surface registration. In: 3nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, pp. 182–194 (2011)

    Google Scholar 

  5. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)

    MATH  MathSciNet  Google Scholar 

  6. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation. Ann. Glob. Anal. Geom. 41(4), 461–472 (2012)

    MATH  MathSciNet  Google Scholar 

  7. Bauer, M., Bruveris, M., Marsland, S., Michor, P.W.: Constructing reparametrization invariant metrics on spaces of plane curves. arXiv:1207.5965 (2012)

  8. Bauer, M., Bruveris, M., Michor, P.W.: Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group. II. Ann. Glob. Anal. Geom. 44(4), 361–368 (2013)

    MATH  MathSciNet  Google Scholar 

  9. Bauer, M., Bruveris, M., Michor, P.W.: The homogeneous Sobolev metric of order one on diffeomorphism groups on the real line. arXiv:1209.2836 (2012)

  10. Bauer, M., Harms, P., Michor, P.W.: Almost local metrics on shape space of hypersurfaces in n-space. SIAM J. Imaging Sci. 5(1), 244–310 (2012)

    MATH  MathSciNet  Google Scholar 

  11. Bauer, M., Harms, P., Michor, P.W.: Curvature weighted metrics on shape space of hypersurfaces in n-space. Differ. Geom. Appl. 30(1), 33–41 (2012)

    MATH  MathSciNet  Google Scholar 

  12. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. J. Geom. Mech. 4(4), 365–383 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group. Ann. Glob. Anal. Geom. 44(1), 5–21 (2013)

    MATH  MathSciNet  Google Scholar 

  14. Bauer, M., Bruveris, M., Michor, P.W., Mumford, D.: Pulling back metrics from the manifold of all Riemannian metrics to the diffeomorphism group (2013, in preparation)

  15. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on the Riemannian manifold of all Riemannian metrics. J. Differ. Geom. 94(2), 187–208 (2013)

    MATH  MathSciNet  Google Scholar 

  16. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Google Scholar 

  17. Binz, E.: Two natural metrics and their covariant derivatives on a manifold of embeddings. Monatshefte Math. 89(4), 275–288 (1980)

    MATH  MathSciNet  Google Scholar 

  18. Binz, E., Fischer, H.R.: The manifold of embeddings of a closed manifold. In: Differential Geometric Methods in Mathematical Physics (Proc. Internat. Conf Tech. Univ. Clausthal). Clausthal-Zellerfeld, 1978. Lecture Notes in Phys., vol. 139, pp. 310–329. Springer, Berlin (1981). With an appendix by P. Michor

    Google Scholar 

  19. Bookstein, F.L.: The study of shape transformations after d’Arcy Thompson. Math. Biosci. 34, 177–219 (1976)

    MathSciNet  Google Scholar 

  20. Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  21. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vis. 89(2–3), 266–286 (2010)

    Google Scholar 

  22. Bruveris, M.: The energy functional on the Virasoro–Bott group with the L 2-metric has no local minima. Ann. Glob. Anal. Geom. 43(4), 385–395 (2013)

    MATH  MathSciNet  Google Scholar 

  23. Bruveris, M., Holm, D.D.: Geometry of image registration: The diffeomorphism group and momentum maps. arXiv:1306.6854 (2013)

  24. Burgers, J.: A mathematical model illustrating the theory of turbulence. In: Advances in Applied Mechanics, vol. 1, pp. 171–199. Elsevier, Amsterdam (1948)

    Google Scholar 

  25. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    MATH  MathSciNet  Google Scholar 

  26. Cervera, V., Mascaró, F., Michor, P.W.: The action of the diffeomorphism group on the space of immersions. Differ. Geom. Appl. 1(4), 391–401 (1991)

    MATH  Google Scholar 

  27. Charpiat, G., Keriven, R., philippe Pons, J., Faugeras, O.D.: Designing spatially coherent minimizing flows for variational problems based on active contours. In: International Conference on Computer Vision, vol. 2, pp. 1403–1408 (2005)

    Google Scholar 

  28. Clarke, B.: The completion of the manifold of Riemannian metrics with respect to its L 2 metric. PhD thesis, Leipzig (2009)

  29. Clarke, B.: The metric geometry of the manifold of Riemannian metrics over a closed manifold. Calc. Var. Partial Differ. Equ. 39, 533–545 (2010)

    MATH  Google Scholar 

  30. Clarke, B.: The Riemannian L 2 topology on the manifold of Riemannian metrics. Ann. Glob. Anal. Geom. 39(2), 131–163 (2011)

    MATH  Google Scholar 

  31. Clarke, B.: The completion of the manifold of Riemannian metrics. J. Differ. Geom. 93(2), 203–268 (2013)

    MATH  Google Scholar 

  32. Clarke, B.: Geodesics, distance, and the CAT(0) property for the manifold of Riemannian metrics. Math. Z. 273(1–2), 55–93 (2013)

    MATH  MathSciNet  Google Scholar 

  33. Clarke, B., Rubinstein, Y.A.: Conformal deformations of the Ebin metric and a generalized Calabi metric on the space of Riemannian metrics. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30(2), 251–274 (2013)

    MATH  MathSciNet  Google Scholar 

  34. Constantin, A., Kolev, B.: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A 35(32), R51–R79 (2002)

    MATH  MathSciNet  Google Scholar 

  35. Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78(4), 787–804 (2003)

    MATH  MathSciNet  Google Scholar 

  36. Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three-dimensional vorticity equation. Commun. Pure Appl. Math. 38(6), 715–724 (1985)

    MATH  MathSciNet  Google Scholar 

  37. Constantin, A., Kappeler, T., Kolev, B., Topalov, P.: On geodesic exponential maps of the Virasoro group. Ann. Glob. Anal. Geom. 31(2), 155–180 (2007)

    MATH  MathSciNet  Google Scholar 

  38. Cotter, C.J.: The variational particle-mesh method for matching curves. J. Phys. A, Math. Theor. 41(34), 344003 (2008)

    MathSciNet  Google Scholar 

  39. Cotter, C.J., Clark, A., Peiró, J.: A reparameterisation based approach to geodesic constrained solvers for curve matching. Int. J. Comput. Vis. 99(1), 103–121 (2012)

    MATH  MathSciNet  Google Scholar 

  40. De Gregorio, S.: On a one-dimensional model for the three-dimensional vorticity equation. J. Stat. Phys. 59(5–6), 1251–1263 (1990)

    MATH  Google Scholar 

  41. Delfour, M.C., Zolésio, J.-P.: Metrics, analysis, differential calculus, and optimization. In: Shapes and Geometries, 2nd edn. Advances in Design and Control, vol. 22. SIAM, Philadelphia (2011)

    Google Scholar 

  42. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, Chichester (1998)

    MATH  Google Scholar 

  43. Ebin, D.G.: The manifold of Riemannian metrics. In: Global Analysis (Proc. Sympos. Pure Math.), Berkeley, CA, 1968, vol. XV, pp. 11–40. Am. Math. Soc., Providence (1970)

    Google Scholar 

  44. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. (2) 92, 102–163 (1970)

    MATH  MathSciNet  Google Scholar 

  45. Eichhorn, J.: Global Analysis on Open Manifolds. Nova Science Publishers, New York (2007)

    MATH  Google Scholar 

  46. Escher, J., Kolev, B.: Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. arXiv:1202.5122v2 (2012)

  47. Escher, J., Kolev, B., Wunsch, M.: The geometry of a vorticity model equation. Commun. Pure Appl. Anal. 11(4), 1407–1419 (2012)

    MATH  MathSciNet  Google Scholar 

  48. Fischer, A.E., Tromba, A.J.: On the Weil-Petersson metric on Teichmüller space. Trans. Am. Math. Soc. 284(1), 319–335 (1984)

    MATH  MathSciNet  Google Scholar 

  49. Freed, D.S., Groisser, D.: The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group. Mich. Math. J. 36(3), 323–344 (1989)

    MATH  MathSciNet  Google Scholar 

  50. Gay-Balmaz, F.: Well-posedness of higher dimensional Camassa-Holm equations. Bull. Transilv. Univ. Braşov, Ser. III 2(51), 55–58 (2009)

    MathSciNet  Google Scholar 

  51. Gay-Balmaz, F., Marsden, J.E., Ratiu, T.S.: The geometry of Teichmüller space and the Euler-Weil-Petersson equations (2013). http://www.lmd.ens.fr/gay-balmaz/Publications_files/GBMaRa_EWP_Short.pdf

  52. Gil-Medrano, O., Michor, P.W.: The Riemannian manifold of all Riemannian metrics. Q. J. Math. Oxford 2 (1991)

  53. Glaunès, J., Vaillant, M., Miller, M.I.: Landmark matching via large deformation diffeomorphisms on the sphere. J. Math. Imaging Vis. 20(1–2), 179–200 (2004). Special issue on mathematics and image analysis

    Google Scholar 

  54. Grenander, U.: General Pattern Theory. Oxford University Press, London (1993)

    Google Scholar 

  55. Grenander, U., Miller, M.I.: Pattern Theory: from Representation to Inference. Oxford University Press, Oxford (2007)

    Google Scholar 

  56. Guieu, L., Roger, C.: Aspects Géométriques et Algébriques, Généralisations [Geometric and Algebraic Aspects, Generalizations]. L’algèbre et Le Groupe de Virasoro. Les Publications CRM, Montreal (2007). With an appendix by Vlad Sergiescu

    Google Scholar 

  57. Günther, A., Lamecker, H., Weiser, M.: Direct LDDMM of discrete currents with adaptive finite elements. In: 3rd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, pp. 1–14 (2011)

    Google Scholar 

  58. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7(1), 65–222 (1982)

    MATH  Google Scholar 

  59. Holm, D.D., Marsden, J.E.: Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation. In: The Breadth of Symplectic and Poisson Geometry. Progr. Math., vol. 232, pp. 203–235. Birkhäuser, Boston (2005)

    Google Scholar 

  60. Hunter, J.K., Saxton, R.: Dynamics of director fields. SIAM J. Appl. Math. 51(6), 1498–1521 (1991)

    MATH  MathSciNet  Google Scholar 

  61. Hunter, J.K., Zheng, Y.X.: On a completely integrable nonlinear hyperbolic variational equation. Physica D 79(2–4), 361–386 (1994)

    MATH  MathSciNet  Google Scholar 

  62. Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields. In: Proceedings of the 12th European Conference on Computer Vision (ECCV’12), vol. V, pp. 804–817. Springer, Berlin (2012)

    Google Scholar 

  63. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    MATH  MathSciNet  Google Scholar 

  64. Jost, J.: Riemannian Geometry and Geometric Analysis, 5th edn. Universitext. Springer, Berlin (2008)

    MATH  Google Scholar 

  65. Kainz, G.: A metric on the manifold of immersions and its Riemannian curvature. Monatshefte Math. 98(3), 211–217 (1984)

    MATH  MathSciNet  Google Scholar 

  66. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58(3), 181–205 (1975)

    MATH  Google Scholar 

  67. Kendall, D.G.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    MATH  MathSciNet  Google Scholar 

  68. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley Series in Probability and Statistics. Wiley, Chichester (1999)

    MATH  Google Scholar 

  69. Khesin, B., Misiołek, G.: Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176(1), 116–144 (2003)

    MATH  MathSciNet  Google Scholar 

  70. Khesin, B., Lenells, J., Misiołek, G.: Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342(3), 617–656 (2008)

    MATH  MathSciNet  Google Scholar 

  71. Khesin, B., Lenells, J., Misiołek, G., Preston, S.C.: Curvatures of Sobolev metrics on diffeomorphism groups. Pure Appl. Math. Q. 9(2), 291–332 (2013)

    MATH  MathSciNet  Google Scholar 

  72. Khesin, B., Lenells, J., Misiołek, G., Preston, S.C.: Geometry of Diffeomorphism Groups, Complete integrability and Geometric statistics. Geom. Funct. Anal. 23(1), 334–366 (2013)

    MATH  MathSciNet  Google Scholar 

  73. Kirillov, A.A., Yuriev, D.V.: Representations of the Virasoro algebra by the orbit method. J. Geom. Phys. 5, 351–363 (1988)

    MATH  MathSciNet  Google Scholar 

  74. Klassen, E., Srivastava, A., Mio, M., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Google Scholar 

  75. Kouranbaeva, S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40(2), 857–868 (1999)

    MATH  MathSciNet  Google Scholar 

  76. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. Am. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  77. Kriegl, A., Michor, P.W.: Regular infinite-dimensional Lie groups. J. Lie Theory 7(1), 61–99 (1997)

    MATH  MathSciNet  Google Scholar 

  78. Kushnarev, S.: Teichons: solitonlike geodesics on universal Teichmüller space. Exp. Math. 18(3), 325–336 (2009)

    MATH  MathSciNet  Google Scholar 

  79. Kushnarev, S., Narayan, A.: Approximating the Weil-Petersson metric geodesics on the universal Teichmüller space by singular solutions. arXiv:1208.2022 (2012)

  80. Lenells, J.: The Hunter-Saxton equation describes the geodesic flow on a sphere. J. Geom. Phys. 57(10), 2049–2064 (2007)

    MATH  MathSciNet  Google Scholar 

  81. Manay, S., Cremers, D., Hong, B.-W., Yezzi, A.J., Soatto, S.: Integral invariants for shape matching. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1602–1618 (2006)

    Google Scholar 

  82. McLachlan, R.I., Marsland, S.: N-particle dynamics of the Euler equations for planar diffeomorphisms. Dyn. Syst. 22(3), 269–290 (2007)

    MATH  MathSciNet  Google Scholar 

  83. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)

    MATH  MathSciNet  Google Scholar 

  84. Mennucci, A.C.G.: Metrics of curves in shape optimization and analysis. In: CIME Course on “Level Set and PDE Based Reconstruction Methods: Applications to Inverse Problems and Image Processing”, Cetraro, 2009

    Google Scholar 

  85. Mennucci, A., Yezzi, A., Sundaramoorthi, G.: Properties of Sobolev-type metrics in the space of curves. Interfaces Free Bound. 10(4), 423–445 (2008)

    MATH  MathSciNet  Google Scholar 

  86. Micheli, M.: The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. PhD thesis, Brown University (2008)

  87. Micheli, M., Michor, P.W., Mumford, D.: Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks. SIAM J. Imaging Sci. 5(1), 394–433 (2012)

    MATH  MathSciNet  Google Scholar 

  88. Micheli, M., Michor, P.W., Mumford, D.: Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izv. Math. 77(3), 109–136 (2013)

    MathSciNet  Google Scholar 

  89. Michor, P.: Manifolds of smooth maps. III. The principal bundle of embeddings of a noncompact smooth manifold. Cah. Topol. Géom. Différ. 21(3), 325–337 (1980)

    MATH  MathSciNet  Google Scholar 

  90. Michor, P.W.: Manifolds of Differentiable Mappings. Shiva Publ., Orpington (1980)

    MATH  Google Scholar 

  91. Michor, P.W.: Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach. In: Phase Space Analysis of Partial Differential Equations. Progr. Nonlinear Differential Equations Appl., vol. 69, pp. 133–215. Birkhäuser, Boston (2006)

    Google Scholar 

  92. Michor, P.W.: Topics in Differential Geometry. Graduate Studies in Mathematics, vol. 93. Am. Math. Soc., Providence (2008)

    MATH  Google Scholar 

  93. Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005) (electronic)

    MATH  MathSciNet  Google Scholar 

  94. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    MATH  MathSciNet  Google Scholar 

  95. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)

    MATH  MathSciNet  Google Scholar 

  96. Michor, P.W., Mumford, D.: A zoo of diffeomorphism groups on \(\mathbb{R}^{n}\). Ann. Glob. Anal. Geom. 44(4), 529–540 (2013)

    MATH  MathSciNet  Google Scholar 

  97. Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 41, 61–84 (2001)

    MATH  Google Scholar 

  98. Miller, M.I., Trouve, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4, 375–405 (2002)

    Google Scholar 

  99. Mio, W., Srivastava, A.: Elastic-string models for representation and analysis of planar shapes. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), vol. 2, pp. II-10–II-15 (2004)

    Google Scholar 

  100. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)

    Google Scholar 

  101. Misiołek, G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24(3), 203–208 (1998)

    MATH  MathSciNet  Google Scholar 

  102. Modin, K.: Generalised Hunter-Saxton equations and optimal information transport. arXiv:1203.4463 (2012)

  103. Mumford, D.: Mathematical theories of shape: do they model perception? In: San Diego ’91, pp. 2–10. International Society for Optics and Photonics, San Diego (1991)

    Google Scholar 

  104. Mumford, D., Desolneux, A.: Pattern Theory: the Stochastic Analysis of Real-World Signals. AK Peters, Wellesley (2010)

    Google Scholar 

  105. Mumford, D., Michor, P.W.: On Euler’s equation and ‘EPDiff’. J. Geom. Mech. 5(3), 319–344 (2013)

    MATH  MathSciNet  Google Scholar 

  106. Neeb, K.-H.: Towards a Lie theory of locally convex groups. Jpn. J. Math. 1(2), 291–468 (2006)

    MATH  MathSciNet  Google Scholar 

  107. Okamoto, H., Sakajo, T., Wunsch, M.: On a generalization of the Constantin-Lax-Majda equation. Nonlinearity 21(10), 2447–2461 (2008)

    MATH  MathSciNet  Google Scholar 

  108. Ovsienko, V.Y., Khesin, B.A.: Korteweg–de Vries superequations as an Euler equation. Funct. Anal. Appl. 21, 329–331 (1987)

    MATH  MathSciNet  Google Scholar 

  109. Preston, S.C.: The motion of whips and chains. J. Differ. Equ. 251(3), 504–550 (2011)

    MATH  MathSciNet  Google Scholar 

  110. Preston, S.C.: The geometry of whips. Ann. Glob. Anal. Geom. 41(3), 281–305 (2012)

    MATH  MathSciNet  Google Scholar 

  111. Rumpf, M., Wirth, B.: Variational time discretization of geodesic calculus. arXiv:1210.0822 (2012)

  112. Saitoh, S.: Theory of Reproducing Kernels and Its Applications. Pitman Research Notes in Mathematics (1988)

    MATH  Google Scholar 

  113. Samir, C., Absil, P.-A., Srivastava, A., Klassen, E.: A gradient-descent method for curve fitting on Riemannian manifolds. Found. Comput. Math. 12(1), 49–73 (2012)

    MATH  MathSciNet  Google Scholar 

  114. Segal, G.: The geometry of the KdV equation. Int. J. Mod. Phys. A 6(16), 2859–2869 (1991)

    MATH  Google Scholar 

  115. Shah, J.: H 0-type Riemannian metrics on the space of planar curves. Q. Appl. Math. 66(1), 123–137 (2008)

    MATH  Google Scholar 

  116. Shah, J.: An H 2 Riemannian metric on the space of planar curves modulo similitudes (2010). www.northeastern.edu/shah/papers/H2metric.pdf

  117. Sharon, E., Mumford, D.: 2d-shape analysis using conformal mapping. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 350–357 (2004)

    Google Scholar 

  118. Sharon, E., Mumford, D.: 2d-shape analysis using conformal mapping. Int. J. Comput. Vis. 70, 55–75 (2006)

    Google Scholar 

  119. Small, C.G.: The Statistical Theory of Shape. Springer Series in Statistics. Springer, New York (1996)

    MATH  Google Scholar 

  120. Smolentsev, N.K.: Diffeomorphism groups of compact manifolds. Sovr. Mat. Prilozh. Geom. 37, 3–100 (2006)

    Google Scholar 

  121. Srivastava, A., Klassen, E., Joshi, S., Jermyn, I.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011)

    Google Scholar 

  122. Stanhope, E., Uribe, A.: The spectral function of a Riemannian orbifold. Ann. Glob. Anal. Geom. 40(1), 47–65 (2011)

    MATH  MathSciNet  Google Scholar 

  123. Sundaramoorthi, G., Yezzi, A., Mennucci, A.C.: Sobolev active contours. Int. J. Comput. Vis. 73(3), 345–366 (2007)

    Google Scholar 

  124. Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Coarse-to-fine segmentation and tracking using Sobolev active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 851–864 (2008)

    Google Scholar 

  125. Sundaramoorthi, G., Mennucci, A., Soatto, S., Yezzi, A.: A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM J. Imaging Sci. 4(1), 109–145 (2011)

    MATH  MathSciNet  Google Scholar 

  126. Taylor, M.E.: Partial Differential Equations I. Basic Theory, 2nd edn. Applied Mathematical Sciences, vol. 115. Springer, New York (2011)

    MATH  Google Scholar 

  127. Triebel, H.: Theory of Function Spaces. II. Monographs in Mathematics, vol. 84. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

  128. Trouvé, A.: Diffeomorphic groups and pattern matching in image analysis. Int. J. Comput. Vis. 28, 213–221 (1998)

    Google Scholar 

  129. Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Found. Comput. Math. 5(2), 173–198 (2005)

    MATH  MathSciNet  Google Scholar 

  130. Wikipedia: Smooth Riemann mapping theorem

  131. Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: A continuum mechanical approach to geodesics in shape space. Int. J. Comput. Vis. 93(3), 293–318 (2011)

    MATH  MathSciNet  Google Scholar 

  132. Wunsch, M.: On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric. J. Nonlinear Math. Phys. 17(1), 7–11 (2010)

    MATH  MathSciNet  Google Scholar 

  133. Yamada, S.: On the geometry of Weil-Petersson completion of Teichmüller spaces. Math. Res. Lett. 11(2–3), 327–344 (2004)

    MATH  MathSciNet  Google Scholar 

  134. Yamada, S.: Some aspects of Weil-Petersson geometry of Teichmüller spaces. In: Surveys in Geometric Analysis and Relativity. Adv. Lect. Math. (ALM), vol. 20, pp. 531–546. International Press, Somerville (2011)

    Google Scholar 

  135. Yezzi, A., Mennucci, A.: Metrics in the space of curves. arXiv:math/0412454 (2004)

  136. Yezzi, A., Mennucci, A.: Conformal metrics and true “gradient flows” for curves. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, vol. 1, pp. 913–919. IEEE Comput. Soc., Washington (2005)

    Google Scholar 

  137. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)

    MATH  MathSciNet  Google Scholar 

  138. Younes, L.: Shapes and Diffeomorphisms. Springer, Berlin (2010)

    MATH  Google Scholar 

  139. Younes, L., Michor, P.W., Shah, J., Mumford, D.: A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 19(1), 25–57 (2008)

    MATH  MathSciNet  Google Scholar 

  140. Zhang, S., Younes, L., Zweck, J., Ratnanather, J.T.: Diffeomorphic surface flows: a novel method of surface evolution. SIAM J. Appl. Math. 68(3), 806–824 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their careful reading of the article as well as the thoughtful comments, that helped us improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martins Bruveris.

Additional information

M. Bauer was supported by FWF Project P24625.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, M., Bruveris, M. & Michor, P.W. Overview of the Geometries of Shape Spaces and Diffeomorphism Groups. J Math Imaging Vis 50, 60–97 (2014). https://doi.org/10.1007/s10851-013-0490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0490-z

Keywords

Navigation