Skip to main content
Log in

Extending the Trace of a Pivotal Monoidal Functor

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a pivotal monoidal functor whose domain is a modular tensor category (MTC). We show that the trace of such a functor naturally extends to a representation of the corresponding tube category. As irreducible representations of the tube category are indexed by pairs of simple objects in the underlying MTC, the simple multiplicities of this representation form a candidate modular invariant matrix. In general, this matrix will not be modular invariant, however it will always commute with the T-matrix. Furthermore, under certain additional conditions on the original functor, it is shown that the corresponding representation of the tube category is a haploid, symmetric, commutative Frobenius algebra. Such algebras are known to be connected to modular invariants, in particular a result of Kong and Runkel implies that the matrix of simple multiplicities commutes with the S-matrix if and only if the dimension of the algebra is equal to the dimension of the underlying MTC. Finally, this procedure is applied to certain pivotal monoidal functors arising from module categories over the Temperley–Lieb category and the associated MTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As defined in [Kon08, Section 6], cf. Remark 5.5.

References

  1. Böckenhauer, J., Evans, D.E.: Modular invariants, graphs and \(\alpha \)-induction for nets of subfactors. I. Commun. Math. Phys. 197(2), 361–386 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Böckenhauer, J., Evans, D.E.: Modular invariants and subfactors. In: Mathematical Physics in Mathematics and Physics (Siena, 2000), volume 30 of Fields Inst. Commun., pp. 11–37. Amer. Math. Soc., Providence, RI (2001)

  3. Bruguières, A., Natale, S.: Exact sequences of tensor categories. Int. Math. Res. Not. IMRN 24, 5644–5705 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Bruguières, A., Natale, S.: Central exact sequences of tensor categories, equivariantization and applications. J. Math. Soc. Jpn. 66(1), 257–287 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cardy, J.L.: Boundary conditions in conformal field theory. In: Integrable Systems in Quantum Field Theory and Statistical Mechanics, volume 19 of Adv. Stud. Pure Math., pp. 127–148. Academic Press, Boston, MA (1989)

  6. Cappelli, A., Itzykson, C., Zuber, J.-B.: The \({\rm A}\)-\({\rm D}\)-\({\rm E}\) classification of minimal and \(A^{(1)}_1\) conformal invariant theories. Commun. Math. Phys. 113(1), 1–26 (1987)

    Article  ADS  Google Scholar 

  7. Clark, D., Morrison, S., Walker, K.: Fixing the functoriality of Khovanov homology. Geom. Topol. 13(3), 1499–1582 (2009)

    Article  MathSciNet  Google Scholar 

  8. Davydov, A., Kong, L., Runkel, I.: Functoriality of the center of an algebra. Adv. Math. 285, 811–876 (2015)

    Article  MathSciNet  Google Scholar 

  9. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. In: Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence, RI (2015)

  10. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. (2) 162(2), 581–642 (2005)

    Article  MathSciNet  Google Scholar 

  11. Etingof, P., Ostrik, V.: Module categories over representations of \({\rm SL}_q(2)\) and graphs. Math. Res. Lett. 11(1), 103–114 (2004)

    Article  MathSciNet  Google Scholar 

  12. Fjelstad, J., Fuchs, J., Runkel, I., Schweigert, C.: Uniqueness of open/closed rational CFT with given algebra of open states. Adv. Theor. Math. Phys. 12(6), 1283–1375 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gannon, T.: The Cappelli–Itzykson–Zuber A–D–E classification. Rev. Math. Phys. 12(5), 739–748 (2000)

    Article  MathSciNet  Google Scholar 

  14. Goodman, F.M., Wenzl, H.: Ideals in the temperley lieb category (2002). arXiv:math/0206301v1

  15. Hardiman, L.: A graphical approach to the Drinfeld centre. (2019). arXiv:1911.07271

  16. Hardiman, L., King, A.: Decomposing the tube category. Glasgow Math. J. (2019)

  17. Huang, Y.-Z.: Vertex operator algebras, the Verlinde conjecture, and modular tensor categories. Proc. Natl. Acad. Sci. USA 102(15), 5352–5356 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kirillov Jr., A., Ostrik, V.: On a \(q\)-analogue of the McKay correspondence and the ADE classification of \({\mathfrak{sl}}_{2}\) conformal field theories. Adv. Math. 171(2), 183–227 (2002)

    Article  MathSciNet  Google Scholar 

  19. Kong, L.: Cardy condition for open-closed field algebras. Commun. Math. Phys. 283(1), 25–92 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kong, L., Runkel, I.: Cardy algebras and sewing constraints. I. Commun. Math. Phys. 292(3), 871–912 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ocneanu, A.: Chirality for operator algebras. In: Subfactors (Kyuzeso, 1993), pp. 39–63. World Sci. Publ., River Edge, NJ (1994)

  22. Ocneanu, A.: Paths on coxeter diagrams: From platonic solids and singularities to minimal models and subfactors. In: Lectures on Operator Theory, Volume 13 of Fields Inst. Monographs. Amer. Math. Soc., Providence (1999). Notes by S. Goto

  23. Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003)

    Article  MathSciNet  Google Scholar 

  24. Schaumann, G.: Traces on module categories over fusion categories. J. Algebra 379, 382–425 (2013)

    Article  MathSciNet  Google Scholar 

  25. Snyder, N., Tingley, P.: The half-twist for \(U_q(\mathfrak{g})\) representations. Algebra Number Theory 3(7), 809–834 (2009)

    Article  MathSciNet  Google Scholar 

  26. Sugawara, H.: A field theory of currents. Phys. Rev. 170, 1659–1662 (Jun 1968)

  27. Turaev, V.G.: Quantum invariants of knots and 3-manifolds, Volume 18 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, (2016). Third edition [of MR1292673]

  28. Yamagami, S.: Frobenius algebras in tensor categories and bimodule extensions. In: Galois Theory, Hopf Algebras, and Semiabelian Categories, Volume 43 of Fields Inst. Commun., pp. 551–570. Amer. Math. Soc., Providence, RI (2004)

  29. Zuber, J.-B.: CFT, BCFT, ADE and all that. In: Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Volume 294 of Contemp. Math., pp. 233–266. Amer. Math. Soc., Providence, RI (2002)

Download references

Acknowledgements

The author thanks Alastair King for his guidance during the period this work was carried out. He is also grateful to Ingo Runkel for multiple helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Hardiman.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Lemmas on Frobenius Algebras

Appendix A. Lemmas on Frobenius Algebras

The purpose of this section is to provide the necessary definitions on Frobenius algebras followed by certain technical results required in Sect. 6.

Definition A.1

Let \( {\mathcal {B}}\) be a monoidal category. A Frobenius algebra A in \( {\mathcal {B}}\) is an algebra and a coalgebra in \( {\mathcal {B}}\) such that

$$\begin{aligned} ({{\,\mathrm{id}\,}}_A \otimes \nabla ) \circ (\Delta \otimes {{\,\mathrm{id}\,}}_A) = \Delta \circ \nabla = (\nabla \otimes {{\,\mathrm{id}\,}}_A) \circ ({{\,\mathrm{id}\,}}_A \otimes \Delta ) \end{aligned}$$
(24)

where \( \nabla \) is the product and \( \Delta \) is the coproduct. Using the graphical notation

we can rewrite Condition (24) as

(25)

We also use

figure b

to denote the unit and

figure c

to denote the counit. A is called haploid if is satisfies \( {{\,\mathrm{Hom}\,}}_{{\mathcal {B}}}({\mathbf{1 }}, A) = {{\mathbb {C}}} \). If \( {\mathcal {B}}\) is braided then A is called commutative if the underlying algebra structure is commutative i.e.

(26)

If \( {\mathcal {B}}\) is pivotal then A is called symmetric if is satisfies

(27)

Remark A.2

Let \( {\mathcal {B}}\) be a fusion category with complete set of simples \( {{\,\mathrm{Irr}\,}}({\mathcal {B}}) \) and let A be an object in \( {\mathcal {B}}\). Any morphism \( \nabla \) from \( A \otimes A \) to A gives rise to the following morphisms,

where XYZ are in \( {\mathcal {B}}\) and \( A_X :={{\,\mathrm{Hom}\,}}_{{\mathcal {B}}}(X,A) \). The full map \( \nabla \) is determined by \( \nabla _R^{S,T} \) for \( R,S,T \in {{\,\mathrm{Irr}\,}}({\mathcal {B}}) \). Indeed we can recover it via

$$\begin{aligned} \bigoplus \limits _{RST} \sum \limits _{g,h,\alpha } \nabla _R^{S,T} (\alpha )(g \otimes h) \circ \alpha ^* \circ (g^* \otimes h^*) = \nabla \end{aligned}$$

where g ranges over a basis of \( A_S \), h ranges over a basis of \( A_T \) and \( \alpha \) ranges over a basis of \( {{\,\mathrm{Hom}\,}}_{{\mathcal {B}}}(R,ST) \). Similarly any morphism from A to \( A \otimes A \) can also be decomposed in the following way

and then recovered via

$$\begin{aligned} \sum \limits _{\begin{array}{c} RST \\ \beta , f \end{array}} \Delta ^R_{ST}(\beta )(f) \circ \beta ^* \circ f^* = \Delta . \end{aligned}$$

Lemma A.3

Let A be an object in \( {\mathcal {B}}\) and let \( \nabla \) be in \( {{\,\mathrm{Hom}\,}}_{{\mathcal {B}}}(A \otimes A,A) \). Then \( \nabla \) is associative if

$$\begin{aligned} \nabla ^{RS,T}_{RST} ({{\,\mathrm{id}\,}}) \big ( \nabla ^{R,S}_{RS} ({{\,\mathrm{id}\,}}) (f \otimes g) \otimes h \big ) = \nabla ^{R,ST}_{RST} ({{\,\mathrm{id}\,}}) \big ( f \otimes \nabla ^{S,T}_{ST}({{\,\mathrm{id}\,}})(g \otimes h) \big ) \end{aligned}$$
(28)

for all \( R,S,T \in {{\,\mathrm{Irr}\,}}({\mathcal {B}}) \), \( \alpha \in {{\,\mathrm{Hom}\,}}_{{\mathcal {B}}}(R,ST) \), \( f \in A_R \), \( g \in A_S \) and \( h \in A_T \). An element \( u \in A_{{\mathbf{1 }}} \) is a unit for \( \nabla \) if

$$\begin{aligned} \nabla ^{{\mathbf{1 }},S}_S ({{\,\mathrm{id}\,}}) (u \otimes g) = g \quad \mathrm {and} \quad \nabla ^{S,{\mathbf{1 }}}_S ({{\,\mathrm{id}\,}}) (g \otimes u) = g \end{aligned}$$
(29)

Furthermore, if \( {\mathcal {B}}\) is braided then \( \nabla \) is commutative if

(30)

Proof

The first claim follows from the fact that, by decomposing the top of each strand (as in, for example, [HK19, Lemma 3.3]), we have

and

Similarly the second claim follows from

and the third claim from

\(\square \)

Lemma A.4

Let \( {\mathcal {B}}\) be a spherical fusion category and let A be an object in \( {\mathcal {B}}\) together with a collection of perfect pairings

$$\begin{aligned} \langle -, -\rangle _S :A_S \otimes A_{S^\vee } \rightarrow {{\mathbb {C}}} \end{aligned}$$

for all \(S \in {{\,\mathrm{Irr}\,}}({\mathcal {B}}) \). Let c be a map from \( {{\,\mathrm{Irr}\,}}({\mathcal {B}}) \) to \( {{\mathbb {C}}} \setminus \{ 0 \} \). We consider the morphisms

and

where \( \{b\} \) is a basis of \( A_S \) and \( \{b'\} \) is the corresponding dual basis of \( A_{S^\vee } \) with respect to \( \langle -, -\rangle _S \). Then is a dual object to A. Furthermore, with respect to this duality, we have

$$\begin{aligned} \langle f , (g^*)^\vee \rangle = c(S) g^*(f) \end{aligned}$$
(31)

for all \( f,g \in A_S \).

Proof

We have

and, in the same way, we also have

To prove the second claim we simply compute

\(\square \)

Lemma A.5

Let \( {\mathcal {B}}\) be a spherical fusion category and let A be an algebra object in \( {\mathcal {B}}\) (with product \( \nabla \)) together with structure maps that make A self-dual. Then A satisfies (16) if and only if

(32)

for all \( R,S,T \in {{\,\mathrm{Irr}\,}}({\mathcal {B}}) \), \( \beta \in {{\,\mathrm{Hom}\,}}_{{\mathcal {B}}}(ST,R) \), \( h,f \in A_R \), \( g,h \in A_T \) and \( f,g \in A_S \).

Proof

Decomposing the coproduct given by the left-hand side of (16) gives

In an analogous way, we also have

which proves the proposition. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardiman, L. Extending the Trace of a Pivotal Monoidal Functor. Commun. Math. Phys. 381, 1055–1090 (2021). https://doi.org/10.1007/s00220-020-03909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03909-8

Navigation