Skip to main content
Log in

Determining a Random Schrödinger Operator: Both Potential and Source are Random

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study an inverse scattering problem associated with a Schrödinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a proper sense. We then derive two unique recovery results in determining the rough strengths of the random source and the random potential, by using the corresponding far-field data. The first recovery result shows that a single realization of the passive scattering measurements uniquely recovers the rough strength of the random source. The second one shows that, by a single realization of the backscattering data, the rough strength of the random potential can be recovered. The ergodicity is used to establish the single realization recovery. The asymptotic arguments in our study are based on techniques from the theory of pseudodifferential operators and microlocal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, G., Chen, C., Li, P.: Inverse random source scattering problems in several dimensions. SIAM/ASA J. Uncertain. Quantif. 4, 1–25 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bao, G., Lin, J., Triki, F.: A multi-frequency inverse source problem. J. Differ. Equ. 249, 3443–3465 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  3. Blåsten, E.: Nonradiating sources and transmission eigenfunctions vanish at corners and edges. SIAM J. Math. Anal. 50, 6255–6270 (2018)

    Article  MathSciNet  Google Scholar 

  4. Blåsten, E., Liu, H.: Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems (2018). arXiv:1808.01425

  5. Blomgren, P., Papanicolaou, G., Zhao, H.: Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am. 111, 230–248 (2002)

    Article  ADS  Google Scholar 

  6. Borcea, L., Papanicolaou, G., Tsogka, C.: Adaptive interferometric imaging in clutter and optimal illumination. Inverse Probl. 22, 1405–1436 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Borcea, L., Papanicolaou, G., Tsogka, C., Berryman, J.: Imaging and time reversal in random media. Inverse Probl. 18, 1247–1279 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Caro, P., Helin, T., Lassas, M.: Inverse scattering for a random potential. Anal. Appl. 17, 513–567 (2019)

    Article  MathSciNet  Google Scholar 

  9. Clason, C., Klibanov, M.: The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium. SIAM J. Sci. Comput. 30, 1–23 (2007)

    Article  MathSciNet  Google Scholar 

  10. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    Book  Google Scholar 

  11. Deng, Y., Li, J., Liu, H.: On identifying magnetized anomalies using geomagnetic monitoring. Arch. Ration. Mech. Anal. 231, 153–187 (2019)

    Article  MathSciNet  Google Scholar 

  12. Deng, Y., Li, J., Liu, H.: On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model. Arch. Ration. Mech. Anal. 235, 691–721 (2020)

    Article  MathSciNet  Google Scholar 

  13. Eskin, G.: Lectures on Linear Partial Differential Equations. Grad. Stud. Math., vol. 123. AMS, Providence (2011)

    MATH  Google Scholar 

  14. Grafakos, L., Oh, S.: The Kato–Ponce inequality. Commun. Part. Diff. Equ. 39, 1128–1157 (2014)

    Article  MathSciNet  Google Scholar 

  15. Griesmaier, R., Sylvester, J.: Uncertainty principles for three-dimensional inverse source problems. SIAM J. Appl. Math. 77, 2066–2092 (2017)

    Article  MathSciNet  Google Scholar 

  16. Griffiths, D.J.: Introduction to Quantum Mechanics. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  17. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  18. Isakov, V.: Inverse Source Problems, Mathematical Surveys and Monographs, vol. 34. American Mathematical Society, Providence (1990)

    Book  Google Scholar 

  19. Isakov, V., Lu, S.: Increasing stability in the inverse source problem with attenuation and many frequencies. SIAM J. Appl. Math. 78, 1–18 (2018)

    Article  MathSciNet  Google Scholar 

  20. Klibanov, M.: Thermoacoustic tomography with an arbitrary elliptic operator. Inverse Probl. 29, 025014 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Knox, C., Moradifam, A.: Determining both the source of a wave and its speed in a medium from boundary measurements. Inverse Probl. 36, 025002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kusiak, S., Sylvester, J.: The scattering support. Commun. Pure Appl. Math. 56, 1525–1548 (2003)

    Article  MathSciNet  Google Scholar 

  23. Lassas, M., Päivärinta, L., Saksman, E.: Inverse Problem for a Random Potential. Contemp. Math., vol. 362. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  24. Lassas, M., Päivärinta, L., Saksman, E.: Inverse scattering problem for a two dimensional random potential. Commun. Math. Phys. 279, 669–703 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Li, J., Helin, T., Li, P.: Inverse random source problems for time-harmonic acoustic and elastic waves. Commun. Part. Diff. Equ. 45, 1335–1380 (2020)

    Article  MathSciNet  Google Scholar 

  26. Li, J., Liu, H., Ma, S.: Determining a random Schrödinger equation with unknown source and potential. SIAM J. Math. Anal. 51, 3465–3491 (2019)

    Article  MathSciNet  Google Scholar 

  27. Liu, H., Uhlmann, G.: Determining both sound speed and internal source in thermo- and photo-acoustic tomography. Inverse Probl. 31, 105005 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lü, Q., Zhang, X.: Global uniqueness for an inverse stochastic hyperbolic problem with three unknowns. Commun. Pure Appl. Math. 68, 948–963 (2015)

    Article  MathSciNet  Google Scholar 

  29. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Pozrikidis, C.: The Fractional Laplacian. Chapman & Hall/CRC, New York (2016)

    Book  Google Scholar 

  31. Royden, H.L., Fitzpatrick, P.M.: Real Analysis, 4th edn. Prentice Hall, Upper Saddle River (2010)

    MATH  Google Scholar 

  32. Rozanov, Y.A.: Markov Random Fields. Springer, New York (1982)

    Book  Google Scholar 

  33. Wang, X., Guo, Y., Zhang, D., Liu, H.: Fourier method for recovering acoustic sources from multi-frequency far-field data. Inverse Probl. 33, 035001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Wong, M.W.: An Introduction to Pseudo-Differential Operators, 3rd edn. World Scientific Pub. Co. Pte. Ltd, Hackensack (2014)

    Book  Google Scholar 

  35. Yuan, G.: Determination of two kinds of sources simultaneously for a stochastic wave equation. Inverse Probl. 31, 085003 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhang, D., Guo, Y., Li, J., Liu, H.: Retrieval of acoustic sources from multi-frequency phaseless data. Inverse Probl. 34, 094001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of J. Li was partially supported by the NSF of China under the Grant Nos. 11571161 and 11731006, the Shenzhen Sci-Tech Fund No. JCYJ20170818153840322. The work of H. Liu was partially supported by Hong Kong RGC general research funds, Nos. 12302017, 12301218, 12302919 and 12301420. The authors would like to thank the anonymous referee for many insightful and constructive comments and suggestions, which have led to significant improvements on the results as well as the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Liu.

Additional information

Communicated by M. Hairer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, H. & Ma, S. Determining a Random Schrödinger Operator: Both Potential and Source are Random. Commun. Math. Phys. 381, 527–556 (2021). https://doi.org/10.1007/s00220-020-03889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03889-9

Navigation