Skip to main content
Log in

Lie–Schwinger Block-Diagonalization and Gapped Quantum Chains with Unbounded Interactions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study quantum chains whose Hamiltonians are perturbations by interactions of short range of a Hamiltonian consisting of a sum of on-site terms that do not couple the degrees of freedom located at different sites of the chain and have a strictly positive energy gap above their ground-state energy. For interactions that are form-bounded w.r.t. the on-site terms, we prove that the spectral gap of the perturbed Hamiltonian above its ground-state energy is bounded from below by a positive constant uniformly in the length of the chain, for small values of a coupling constant. Our proof is based on an extension of a novel method introduced in [FP] involving local Lie–Schwinger conjugations of the Hamiltonians associated with connected subsets of the chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The initial step, \((0,N)\rightarrow (1,1)\), is of this type; see the definitions in (3.2) corresponding to a Hamiltonian \(K_N\) with nearest-neighbor interactions.

  2. The expression \(-t\sum _{I_{1,i} \subset I_{k,q}}\langle V^{(k,q-1)}_{I_{1,i}} \rangle P^{(+)}_{I_{1,i}}\) could be actually bounded (from below) by \(-2t\sum _{i=q}^{k+q}H_i\).

  3. In Sect. 2.1 we have claimed that the effective potentials \(V^{(k, q-1)}_{I_{j,i}}\) are symmetric. This can be proven starting from the algorithm \(\alpha _{I_{k,q}}\) (described in Sect.  3) with the assumption in (2.26), as explained in Remark 4.4 where we deduce that the effective potentials \(V^{(k, q-1)}_{I_{j,i}}\), \(I_{j,i}\subset I_{k,q}\), are symmetric in the domain \(D((H^0_{I_{k,q}})^{\frac{1}{2}})\).

  4. The notation \(\alpha _{I_{k,q}}(V^{(k,q-1)}_{I_{l,i}})\) indicates the potential associated with the interval \(I_{l,i}\) in step (kq), but this is, in general, a function of potentials corresponding to different intervals and not only a function of \(V^{(k,q-1)}_{I_{l,i}}\); see cases (d-1) and (d-2).

  5. Recall that \(V_{I_{0,i}}^{(0,N)}:=H_i\) and \(V_{I_{0,i}}^{(k,q)}\) will coincide with \(V_{I_{0,i}}^{(0,N)}\) for all (kq).

  6. Recall the special steps of type \((k,q)= (k, N-k)\) with subsequent step \((k+1,1)\).

  7. Indeed \(\Delta _{I_{k,q}}\) is the infimum of (2.44) for t in the considered interval.

References

  1. Bravyi, S., Hastings, M.B.: A short proof of stability of topological order under local perturbations Commun. Math. Phys. 307, 609 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bravyi, S., Hastings, M.B., Michalakis, S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bachmann, S., Nachtergaele, B.: On gapped phases with a continuous symmetry and boundary operators. J. Stat. Phys. 154(1–2), 91–112 (2014)

    Article  MathSciNet  Google Scholar 

  4. Datta, N., Fernandez, R., Fröhlich, J.: Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely many ground states. J. Stat. Phys. 84, 455–534 (1996)

  5. Datta, N., Fernandez, R., Fröhlich, J., Rey-Bellet, L.: Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy. Helv. Physica Acta 69, 752–820 (1996)

  6. Del Vecchio, S., Fröhlich, J., Pizzo, A., Rossi, S.: Lie-Schwinger block-diagonalization and gapped quantum chains: analyticity of the ground-state energy. J. Funct. Anal. (2020). https://doi.org/10.1016/j.jfa.2020.108703

    Article  MathSciNet  MATH  Google Scholar 

  7. De Roeck, W., Schütz, M.: An exponentially local spectral flow for possibly non-self-adjoint perturbations of non-interacting quantum spins, inspired by KAM theory. Lett. Math. Phys. 107, 505–532 (2017)

  8. De Roeck, W., Salmhofer, M.: Persistence of exponential decay and spectral gaps for interacting fermions. Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-018-3211-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Del Vecchio, S., Fröhlich, J., Pizzo, A., Rossi, S. Local iterative block-diagonalization of gapped Hamiltonians: a new tool in singular perturbation theory. ArXiv:2007.07667 (2020)

  10. Fernandez, R., Fröhlich, J., Ueltschi, D.: Mott transitions in lattice Boson models. Commun. Math. Phys. 266, 777–795 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  11. Fröhlich, J., Pizzo, A.: Lie-Schwinger block-diagonalization and gapped quantum chains. Commun. Math. Phys. 375, 2039–2069 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  12. Hastings, M.B.: The stability of free fermi Hamiltonians. J. Math. Phys. 60, 042201 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  13. Imbrie, J.Z.: Multi-scale Jacobi method for anderson localization. Commun. Math. Phys. 341, 491–521 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  14. Imbrie, J.Z.: On many-body localization for quantum spin chains. J. Stat. Phys. 163, 998–1048 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  15. Kennedy, T., Tasaki, H.: Hidden symmetry breaking and the Haldane phase in \(\text{ S } = 1\) quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)

    Article  MathSciNet  Google Scholar 

  16. Kotecky, R., Ueltschi, D.: Effective interactions due to quantum fluctuations. Commun. Math. Phys. 206, 289–3355 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  17. Moon, A., Nachtergaele, B.: Stability of gapped ground state phases of spins and fermions in one dimension. J. Math. Phys. 59, 091415 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  18. Michalakis, S., Zwolak, J.P.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  19. Nachtergaele, B., Sims, R., Young. A.: Lieb–Robinson bounds, the spectral flow, and stability of the spectral gap for lattice fermion systems. Mathematical Problems in Quantum Physics, pp. 93–115

  20. Yarotsky, D.A.: Ground states in relatively bounded quantum perturbations of classical systems. Commun. Math. Phys. 261, 799–819 (2006)

Download references

Acknowledgements

AP thanks the Pauli Center, Zürich, for hospitality in Spring 2017 when this project got started. SDV and SR acknowledge the ERC Advanced Grant 669240 QUEST “Quantum Algebraic Structures and Models”. SDV, AP, and SR also acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pizzo.

Additional information

Communicated by M. Salmhofer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

Lemma A.1

For any \(1\le n \le N\)

$$\begin{aligned} \sum _{i=1}^{n} P^{\perp }_{\Omega _i} \ge \mathbb {1}-\bigotimes _{i=1}^{n} P_{\Omega _i}=:\,\Big (\bigotimes _{i=1}^{n} P_{\Omega _i}\Big )^{\perp } \end{aligned}$$
(4.78)

where \(P^{\perp }_{\Omega _i}=\mathbb {1}-P_{\Omega _i}\).

Proof

Though the Hibert spaces \({\mathcal {H}}_j\) in (1.1) are possibly infinite dimensional, the proof of this lemma can be carried out as in Lemma A.1 of [FP]. \(\quad \square \)

From Lemma A.1 we derive the following bound.

Corollary A.2

For \(i+r\le N\), we define

$$\begin{aligned} P^{(+)}_{I_{r,i}}:=\Big (\bigotimes _{k=i}^{i+r}P_{\Omega _{k}}\Big )^{\perp }\,. \end{aligned}$$
(A.1)

Then, for \(1\le l \le L \le N-r\),

$$\begin{aligned} \sum _{i=l}^{L}P^{(+)}_{I_{r,i}}\le (r+1) \sum _{i=l}^{L+r} P^{\perp }_{\Omega _i} \,. \end{aligned}$$
(A.2)

Proof

From Lemma A.1 we derive

$$\begin{aligned} \sum _{j=i}^{i+r} P^{\perp }_{\Omega _{j}} \ge \Big (\bigotimes _{k=i}^{i+r}P_{\Omega _{k}}\Big )^{\perp }\,. \end{aligned}$$
(A.3)

By summing the l-h-s of (A.4) for i from l up to L, for each j we get not more than \(r+1\) terms of the type \(P^{\perp }_{\Omega _{j}}\) and the inequality in (A.3) follows. \(\quad \square \)

Lemma A.3

For \(t>0\) sufficiently small as stated in Corollary 2.8, the following bound holds

$$\begin{aligned} (\Phi , P^{(+)}_{I_{k,q}}(G_{I_{k,q}}-E_{I_{k,q}})P^{(+)}_{I_{k,q}}\Phi ) \ge \frac{\Delta _{I_{k,q}}}{2} (\Phi , P^{(+)}_{I_{k,q}}(H^0_{I_{k,q}}+1) P^{(+)}_{I_{k,q}}\Phi ) \end{aligned}$$
(A.4)

for any vector \(\Phi \) in the domain of \(H^0_{I_{k,q}}\), where \(\Delta _{I_{k,q}}\) is the boundFootnote 7 from below of the spectral gap determined in Corollary 2.8. Consequently,

$$\begin{aligned} \left\| \frac{1}{(G_{I_{k,q}}-E_{I_{k,q}})^{\frac{1}{2}}}P^{(+)}_{I_{k,q}} (H^0_{I_{k,q}}+1)^{\frac{1}{2}}\right\| \le \frac{\sqrt{2}}{\Delta _{I_{k,q}}^{\frac{1}{2}}} \end{aligned}$$
(A.5)

and

$$\begin{aligned} \left\| \frac{1}{(G_{I_{k,q}}-E_{I_{k,q}})}P^{(+)}_{I_{k,q}} (H^0_{I_{k,q}}+1)^{\frac{1}{2}}\right\| \le \frac{\sqrt{2}}{\Delta _{I_{k,q}}}\,. \end{aligned}$$
(A.6)

Proof

The proof of (A.5) follows from inequality (2.45) (stated in Lemma 2.6) and (1.4). Regarding the operator norm in (A.6), we estimate

$$\begin{aligned} \left\| (H^0_{I_{k,q}}+1)^{\frac{1}{2}}P^{(+)}_{I_{k,q}} \frac{1}{(G_{I_{k,q}}-E_{I_{k,q}})^{\frac{1}{2}}}\Psi \right\| ^2 \end{aligned}$$
(A.7)

for vectors \(\Psi \) of the form \(\frac{(G_{I_{k,q}} -E_{I_{k,q}})^{\frac{1}{2}}\Phi }{\Vert (G_{I_{k,q}}-E_{I_{k,q}})^{\frac{1}{2}}\Phi \Vert }\), where \(\Phi \) is in the domain of \(G_{I_{k,q}}P^{(+)}_{I_{k,q}} =P^{(+)}_{I_{k,q}}G_{I_{k,q}}P^{(+)}_{I_{k,q}}\). The squared norm in (A.8) is seen to coincide with the l-h-s of

$$\begin{aligned} \frac{(\Phi , (H^0_{I_{k,q}}+1)\Phi )}{(\Phi , (G_{I_{k,q}} -E_{I_{k,q}})\Phi )}\le \frac{2}{\Delta _{I_{k,q}}}\,, \end{aligned}$$
(A.8)

where the inequality above corresponds to (A.5). The operator norm in (A.7) follows from (A.6) and Corollary 2.6 which implies

$$\begin{aligned} \Vert \frac{1}{P^{(+)}_{I_{k,q}}(G_{I_{k,q}}-E_{I_{k,q}})^{\frac{1}{2}} P^{(+)}_{I_{k,q}}}P^{(+)}_{I_{k,q}}\Vert \le \frac{1}{\Delta _{I_{k,q}}^{\frac{1}{2}}}. \end{aligned}$$

\(\square \)

Lemma A.4

Assume that \(t>0\) is sufficiently small, \(\Vert V^{(k,q-1)}_{I_{r,i}}\Vert _{H_0} \le t^{\frac{r-1}{4}}\), and \(\Delta _{I_{k,q}}\ge \frac{1}{2}\). Then, for arbitrary N, \(k\ge 1\), and \(q\ge 2\), the inequalities

$$\begin{aligned}&\Vert V^{(k,q)}_{I_{k,q}}\Vert _{H_0}\le 2\Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H_0}\, \end{aligned}$$
(A.9)
$$\begin{aligned}&\Vert S_{I_{k,q}}\Vert \le At\, \Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H_0} \end{aligned}$$
(A.10)
$$\begin{aligned}&\Vert S_{I_{k,q}}(H^0_{I_{k,q}}+1)^{\frac{1}{2}}\Vert =\Vert (H^0_{I_{k,q}}+1)^{\frac{1}{2}}S_{I_{k,q}}\Vert \le Bt\, \Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H_0} \end{aligned}$$
(A.11)

hold true for universal constants A and B. For \(q=1\), \(V^{(k,q-1)}_{I_{k,q}}\) is replaced by \(V^{(k-1,N-k+1)}_{I_{k,q}}\) in the right side of (A.10), (A.11), and (A.12).

Proof

In the following we assume \(q\ge 2\); if \(q=1\) an analogous proof holds. We recall that

$$\begin{aligned} V^{(k,q)}_{I_{k,q}}:= \sum _{j=1}^{\infty }t^{j-1}(V^{(k,q-1)}_{I_{k,q}})^{diag}_j \, \end{aligned}$$
(A.12)

and

$$\begin{aligned} S_{I_{k,q}}:=\sum _{j=1}^{\infty }t^j(S_{I_{k,q}})_j\ \end{aligned}$$
(A.13)

with

$$\begin{aligned} (V^{(k,q-1)}_{I_{k,q}})_1\equiv V^{(k,q-1)}_{I_{k,q}}\,, \end{aligned}$$

and, for \(j\ge 2\),

$$\begin{aligned}&(V^{(k,q-1)}_{I_{k,q}})_j\, \end{aligned}$$
(A.14)
$$\begin{aligned}&\quad :=\sum _{p\ge 2, r_1\ge 1 \dots , r_p\ge 1\, ; \, r_1+\dots +r_p=j}\frac{1}{p!}\text {ad}\,(S_{I_{k, q}})_{r_1} \Big (\text {ad}\,(S_{I_{k,q}})_{r_2}\dots (\text {ad}\,(S_{I_{k,q}})_{r_p} (G_{I_{k,q}}) )\Big ) \end{aligned}$$
(A.15)
$$\begin{aligned}&\qquad +\sum _{p\ge 1, r_1\ge 1 \dots , r_p\ge 1\, ; \, r_1+\dots +r_p=j-1} \frac{1}{p!}\text {ad}\,(S_{I_{k,q}})_{r_1}\Big (\text {ad}\,(S_{I_{k,q}})_{r_2} \dots (\text {ad}\,(S_{I_{k,q}})_{r_p}(V^{(k,q-1)}_{I_{k,q}})) \Big ),\nonumber \\ \end{aligned}$$
(A.16)

and

$$\begin{aligned} (S_{I_{k,q}})_j:=\frac{1}{G_{I_{k,q}}-E_{I_{k,q}}}P^{(+)}_{I_{k,q}}\,(V^{(k,q-1)}_{I_{k,q}})_j \,P^{(-)}_{I_{k,q}}-h.c. \end{aligned}$$
(A.17)

where \(j\ge 1\).

Using (A.18) we compute

$$\begin{aligned} \text {ad}\,(S_{I_{k,q}})_{r_p}(G_{I_{k,q}})= & {} \text {ad}\,(S_{I_{k,q}})_{r_p}(G_{I_{k,q}}-E_{I_{k,q}})\nonumber \\= & {} \,[\frac{1}{G_{I_{k,q}}-E_{I_{k,q}}}P^{(+)}_{I_{k,q}} \,(V^{(k, q-1)}_{I_{k,q}})_{r_p}\,P^{(-)}_{I_{k,q}}\,,\,G_{I_{k,q}}-E_{I_{k,q}}]+h.c. \end{aligned}$$
(A.18)
$$\begin{aligned}= & {} -P^{(+)}_{I_{k,q}}\,(V^{(k,q-1)}_{I_{k,q}})_{r_p}\,P^{(-)}_{I_{k,q}} -P^{(-)}_{I_{k,q}}\,(V^{(k, q-1)}_{I_{k,q}})_{r_p}\,P^{(+)}_{I_{k,q}}\,. \end{aligned}$$
(A.19)

To begin with, we show the following inequality

$$\begin{aligned} \Vert (S_{I_{k,q}})_j\Vert \le \frac{2\sqrt{2}}{\Delta _{I_{k,q}}} \Vert (V_{I_{k,q}}^{(k, q-1)})_j\Vert _{H^0}\,, \end{aligned}$$
(A.20)

where \(\Vert (V_{I_{k,q}}^{(k, q-1)})_j\Vert _{H_0}\) will turn out to be bounded in the next step. As for estimate (A.21), it follows from the following computation:

$$\begin{aligned}&\Vert (S_{I_{k,q}})_j\Vert \end{aligned}$$
(A.21)
$$\begin{aligned}&\quad \le 2\left\| \frac{1}{G_{I_{k,q}}-E_{I_{k,q}}} P^{(+)}_{I_{k,q}}\,(V^{(k,q-1)}_{I_{k,q}})_j\,P^{(-)}_{I_{k,q}}\right\| \end{aligned}$$
(A.22)
$$\begin{aligned}&\quad = 2\left\| \frac{1}{G_{I_{k,q}}-E_{I_{k,q}}}P^{(+)}_{I_{k,q}} (H_{I_{k,q}}^0+1)^{\frac{1}{2}}(H_{I_{k,q}}^0+1)^{-\frac{1}{2}} (V^{(k,q-1)}_{I_{k,q}})_j(H_{I_{k,q}}^0+1)^{-\frac{1}{2}}P^{(-)}_{I_{k,q}}\right\| \end{aligned}$$
(A.23)
$$\begin{aligned}&\quad \le 2\left\| \frac{1}{G_{I_{k,q}}-E_{I_{k,q}}}P^{(+)}_{I_{k,q}} (H_{I_{k,q}}^0+1)^{\frac{1}{2}}\right\| \Vert (V_{I_{k,q}}^{(k,q-1)})_j\Vert _{H^0} \end{aligned}$$
(A.24)
$$\begin{aligned}&\quad \le \frac{2\sqrt{2}}{\Delta _{I_{k,q}}}\Vert (V_{I_{k,q}}^{(k,q-1)})_j\Vert _{H^0}\,, \end{aligned}$$
(A.25)

where we have used (A.7) in the last inequality.

Analogously, making use of (A.6) and \((H_{I_{k,q}}^0+1)^{\frac{1}{2}}P^{(-)}_{I_{k,q}}=P^{(-)}_{I_{k,q}}\), we estimate

$$\begin{aligned} \Vert (S_{I_{k,q}})_{j}(H^0_{I_{k,q}}+1)^{\frac{1}{2}}\Vert =\Vert (H^0_{I_{k,q}}+1)^{\frac{1}{2}}(S_{I_{k,q}})_{j}\Vert \le \frac{2+\sqrt{2}}{\Delta _{I_{k,q}}} \Vert (V_{I_{k,q}}^{(k, q-1)})_{j}\Vert _{H^0}\,. \end{aligned}$$
(A.26)

Next, we want to prove that

$$\begin{aligned}&\Vert (V^{(k,q-1)}_{I_{k,q}})_j\Vert _{H^0}\nonumber \\&\quad \le \sum _{p=2}^{j}\,\frac{(2c)^p}{p!} \sum _{ r_1\ge 1 \dots , r_p\ge 1\, ; \, r_1+\dots +r_p=j}\nonumber \\&\qquad \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_1}\Vert _{H^0}\Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_2} \Vert _{H^0}\dots \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_p}\Vert _{H^0}\nonumber \\&\qquad +2\Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H^0} \sum _{p=1}^{j-1}\,\frac{(2c)^p}{p!} \,\sum _{ r_1\ge 1 \dots , r_p\ge 1\, ; \, r_1+\dots +r_p=j-1}\nonumber \\&\qquad \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_1}\Vert _{H^0}\Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_2} \Vert _{H^0}\dots \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_p}\Vert _{H^0}\,, \end{aligned}$$
(A.27)

where \(c:= \frac{2+\sqrt{2}}{\Delta _{I_{k,q}}}(> \frac{2\sqrt{2}}{\Delta _{I_{k,q}}})\). In order to show this, we note that formula (A.15) yielding \((V_{I_{k,q}}^{(k, q-1)})_j\) contains two sums. We first deal with the second, that is

$$\begin{aligned}&\sum _{p\ge 1, r_1\ge 1 \dots , r_p\ge 1\, ; \, r_1+\dots +r_p=j-1} \frac{1}{p!}\text {ad}(S_{I_{k,q}})_{r_1}\Big (\text {ad} (S_{I_{k,q}})_{r_2}\dots (\text {ad}\,(S_{I_{k,q}})_{r_p} (V^{(k,q-1)}_{I_{k,q}}))\Big )\,. \end{aligned}$$

Each summand of the above sum is in turn a sum of \(2^p\) terms which, up to a sign, are obtained by permuting the factors in the following operator product

$$\begin{aligned} (S_{I_{k,q}})_{r_1}(S_{I_{k,q}})_{r_2}\ldots (S_{I_{k,q}})_{r_p} V_{I_{k,q}}^{(k, q-1)}\,, \end{aligned}$$

with the potential \(V_{I_{k,q}}^{(k, q-1)}\) allowed to appear at any position. It suffices to study only one of these terms, for the others can be treated in the same way. For instance, we can treat

$$\begin{aligned} (S_{I_{k,q}})_{r_1} V_{I_{k,q}}^{(k, q-1)} (S_{I_{k,q}})_{r_2}\ldots (S_{I_{k,q}})_{r_p}. \end{aligned}$$

Notice that

$$\begin{aligned}&\Vert (S_{I_{k,q}})_{r_1} V_{I_{k,q}}^{(k, q-1)} (S_{I_{k,q}})_{r_2} \ldots (S_{I_{k,q}})_{r_p}\Vert _{H^0} \\&\quad =\Vert (H_{I_{k,q}}^0+1)^{-\frac{1}{2}} (S_{I_{k,q}})_{r_1} (H_{I_{k,q}}^0+1)^{\frac{1}{2}} (H_{I_{k,q}}^0+1)^{-\frac{1}{2}}\\&\qquad V_{I_{k,q}}^{(k, q-1)}(H_{I_{k,q}}^0+1)^{-\frac{1}{2}} (H_{I_{k,q}}^0+1)^{\frac{1}{2}} (S_{I_{k,q}})_{r_2} \ldots (S_{I_{k,q}})_{r_p} (H_{I_{k,q}}^0+1)^{-\frac{1}{2}}\Vert \\&\quad \le \Vert V_{I_{k,q}}^{(k, q-1)} \Vert _{H^0} \Vert (S_{I_{k,q}})_{r_1} (H_{I_{k,q}}^0+1)^{\frac{1}{2}} \Vert \, \Vert (H_{I_{k,q}}^0+1)^{\frac{1}{2}} (S_{I_{k,q}})_{r_2}\Vert \ldots \Vert (S_{I_{k,q}})_{r_p}\Vert \\&\quad \le c^p \Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H^0} \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_1}\Vert _{H^0}\Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_2} \Vert _{H^0}\dots \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_p}\Vert _{H^0}\,, \end{aligned}$$

where (A.21) and (A.27) have been used. Putting these terms together we get the second sum of (A.28).

As for the first sum in (A.15), i.e.,

$$\begin{aligned} \sum _{p\ge 2, r_1\ge 1 \dots , r_p\ge 1\, ; \, r_1+\dots +r_p=j} \frac{1}{p!}\text {ad}\,(S_{I_{k,q}})_{r_1}\Big (\text {ad}\,(S_{I_{k,q}})_{r_2} \dots (\text {ad}\,(S_{I_{k,q}})_{r_p}(G_{I_{k,q}}))\Big )\,, \end{aligned}$$

we recall the computation in (A.19) and note that each of its summands is in turn the sum up to a sign of all permutations of

$$\begin{aligned} (S_{I_{k,q}})_{r_1}(S_{I_{k,q}})_{r_2}\ldots (S_{I_{k,q}})_{r_{p-1}}[-P_{I_{k,q}}^{(+)}(V_{I_{k,q}}^{(k,q-1)})_{r_p} P_{I_{k,q}}^{(-)}- P_{I_{k,q}}^{(-)} (V_{I_{k,q}}^{(k,q-1)})_{r_p}P_{I_{k,q}}^{(+)}]\,. \end{aligned}$$

A very minor variation of the computations above shows that the \(\Vert \cdot \Vert _{H^0}\)-norm of the first sum in (A.15) is bounded from above by

$$\begin{aligned} \sum _{p=2}^{j}\,\frac{(2c)^p}{p!}\sum _{ r_1\ge 1 \dots , r_p\ge 1 \, ; \, r_1+\dots +r_p=j}\,\Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_1}\Vert _{H^0} \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_2}\Vert _{H^0}\dots \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_p} \Vert _{H^0}\,; \end{aligned}$$

here we have implicitly assumed that \(c>1\), without loss of generality.

From now on, we refer to the proof of Theorem 3.2 in [DFFR]. Following the procedure in [DFFR], we assume \(\Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H_0}\ne 0\) and recursively define numbers \(B_j\), \(j\ge 1\), by the equations

$$\begin{aligned} B_1&:=\Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H^0}=\Vert (V^{(k,q-1)}_{I_{k,q}})_1\Vert _{H^0}, \end{aligned}$$
(A.28)
$$\begin{aligned} B_j&:=\frac{1}{a}\sum _{k=1}^{j-1}B_{j-k}B_k\,,\quad j\ge 2\,, \end{aligned}$$
(A.29)

with \(a>0\) satisfying the relation

$$\begin{aligned} e^{2c a}-1+ \left( \frac{e^{2c a}-2c a -1}{a}\right) -1=0\,. \end{aligned}$$
(A.30)

Using (A.29), (A.30), (A.28), and an induction, we derive the inequality (see Theorem 3.2 in [DFFR]) for \(j\ge 2\)

$$\begin{aligned} \Vert (V^{(k,q-1)}_{I_{k,q}})_j\Vert _{H^0}\le B_j \,\Big (\frac{e^{2c a}-2c a-1}{a}\Big )+2\Vert V^{(k,q-1)}_{I_{k,q}} \Vert _{H^0}\,B_{j-1}\Big (\frac{e^{2c a}-1}{a}\Big )\,. \end{aligned}$$
(A.31)

From (A.29) and (A.30) it also follows that

$$\begin{aligned} B_j\ge \frac{2B_{j-1}\Vert \,V^{(k,q-1)}_{I_{k,q}}\,\Vert _{H^0}}{a} \,\quad \Rightarrow \quad B_{j-1}\le a\frac{B_j}{2\Vert \,V^{(k,q-1)}_{I_{k,q}} \,\Vert _{H^0}}\,, \end{aligned}$$
(A.32)

which, when combined with (A.32) and (A.31), yields

$$\begin{aligned} B_j\ge \Vert \,(V^{(k,q-1)}_{I_{k,q}})_j\Vert _{H^0}\,. \end{aligned}$$
(A.33)

The numbers \(B_j\) are seen to be the Taylor coefficients of the function

$$\begin{aligned} f(x):=\frac{a}{2}\cdot \left( \,1-\sqrt{1- (\frac{4}{a} \cdot \Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H^0}) \,x }\,\right) \,, \end{aligned}$$
(A.34)

(see [DFFR]). We observe that

$$\begin{aligned} \Vert (V^{(k,q-1)}_{I_{k,q}})^{diag}_j \Vert _{H^0}= & {} \max \{\Vert P^{(+)}_{I_{k, q}}(V^{(k,q-1)}_{I_{k,q}})_j P^{(+)}_{I_{k,q}}\Vert _{H^0}\,,\,\Vert P^{(-)}_{I_{k,q}}(V^{(k,q-1)}_{I_{k,q}})_j P^{(-)}_{I_{k,q}}\Vert _{H^0}\} \end{aligned}$$
(A.35)
$$\begin{aligned}= & {} \max _{\#=\pm }\,\Vert (\frac{1}{H^0_{I_{k,q}}+1})^{\frac{1}{2}}P^{(\#)}_{I_{k,q}} (V^{(k,q-1)}_{I_{k,q}})_j P^{(\#)}_{I_{k,q}} (\frac{1}{H^0_{I_{k,q}}+1})^{\frac{1}{2}}\Vert \end{aligned}$$
(A.36)
$$\begin{aligned}= & {} \max _{\#=\pm }\,\Vert P^{(\#)}_{I_{k,q}}(\frac{1}{H^0_{I_{k,q}}+1})^{\frac{1}{2}} (V^{(k,q-1)}_{I_{k,q}})_j (\frac{1}{H^0_{I_{k,q}}+1})^{\frac{1}{2}} P^{(\#)}_{I_{k,q}}\Vert \end{aligned}$$
(A.37)
$$\begin{aligned}\le & {} \Vert (V^{(k,q-1)}_{I_{k,q}})_j \Vert _{H^0}\,. \end{aligned}$$
(A.38)

Therefore (if we consider the norms \(\Vert (V^{(k,q-1)}_{I_{k,q}})^{diag}_j \Vert _{H^0}\) as t-independent) the radius of analyticity, \(t_0\), of the series

$$\begin{aligned} \sum _{j=1}^{\infty }t^{j-1}\Vert (V^{(k,q-1)}_{I_{k,q}})^{diag}_j \Vert _{H^0}=\frac{1}{t}\,\Big (\sum _{j=1}^{\infty }\,t^{j}\,\Vert (V^{(k,q-1)}_{I_{k,q}})^{diag}_j \Vert _{H^0}\Big ) \end{aligned}$$
(A.39)

is bounded below by the radius of analyticity of \(\sum _{j=1}^{\infty }x^jB_j\), i.e.,

$$\begin{aligned} t_0\ge \frac{a}{4\Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H^0}}\ge \frac{a}{4} \end{aligned}$$
(A.40)

where we have assumed \(0<t<1\) and invoked the assumption \(\Vert V^{(k,q-1)}_{I_{r,i}}\Vert _{H^0}\le t^{\frac{r-1}{4}}\). The same bound holds true for the radius of convergence of the series \(S_{I_{k,q}}:=\sum _{j=1}^{\infty }t^j(S_{I_{k,q}})_j\,\), due to inequality (A.21) . By using (A.29) and (A.34), for \(0<t<1\) and in the interval \((0,\frac{a}{8})\), we get the bound

$$\begin{aligned} \sum _{j=1}^{\infty }t^{j-1}\Vert (V^{(k,q-1)}_{I_{k,q}})^{diag}_j \Vert _{H^0}\le & {} \frac{1}{t}\sum _{j=1}^{\infty }t^jB_j \end{aligned}$$
(A.41)
$$\begin{aligned}= & {} \frac{1}{t}\cdot \frac{a}{2}\cdot \left( \,1-\sqrt{1- (\frac{4}{a}\cdot \Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H^0}) \,t }\,\right) \end{aligned}$$
(A.42)
$$\begin{aligned}\le & {} (1+C_a \cdot t )\,\Vert V^{(k,q-1)}_{I_{k,q}}\Vert _{H^0} \end{aligned}$$
(A.43)

for some a-dependent constant \(C_a>0\). Thus we conclude that the inequality in (A.10) holds true, provided \(t>0\) is sufficiently small, independently of N, k, and q. In a similar way, we derive (A.11) and (A.12), using (A.22)–(A.26) and (A.27), respectively. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Vecchio, S., Fröhlich, J., Pizzo, A. et al. Lie–Schwinger Block-Diagonalization and Gapped Quantum Chains with Unbounded Interactions. Commun. Math. Phys. 381, 1115–1152 (2021). https://doi.org/10.1007/s00220-020-03878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03878-y

Navigation