Skip to main content
Log in

On Gapped Phases with a Continuous Symmetry and Boundary Operators

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss the role of compact symmetry groups, G, in the classification of gapped ground state phases of quantum spin systems. We consider two representations of G on infinite subsystems. First, in arbitrary dimensions, we show that the ground state spaces of models within the same G-symmetric phase carry equivalent representations of the group for each finite or infinite sublattice on which they can be defined and on which they remain gapped. This includes infinite systems with boundaries or with non-trivial topologies. Second, for two classes of one-dimensional models, by two different methods, for G=SU(2) in one, and GSU(d), in the other we construct explicitly an ‘excess spin’ operator that implements rotations of half of the infinite chain on the GNS Hilbert space of the ground state of the full chain. Since this operator is constructed as the limit of a sequence of observables, the representation itself is, in principle, experimentally observable. We claim that the corresponding unitary representation of G is closely related to the representation found at the boundary of half-infinite chains. We conclude with determining the precise relation between the two representations for the class of frustration-free models with matrix product ground states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wen, X.-G.: Topological orders and edge excitations in fractional quantum Hall states. In: Geyer, H.B. (ed.) Field Theory, Topology and Condensed Matter Physics. Lecture Notes in Physics, vol. 456, pp. 155–176. Springer, Berlin (1995)

    Chapter  Google Scholar 

  2. Lieb, E.H., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57(1), 79–90 (1970)

    Article  ADS  Google Scholar 

  4. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Hastings, M., Wen, X.-G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72(4), 045141 (2005)

    Article  ADS  Google Scholar 

  6. Kitaev, A.: Periodic table for topological insulators and superconductors. In: Advances in Theoretical Physics: Landau Memorial Conference, Chernogolovka, Russia, 22–26 June 2008. AIP Conference Proceedings, vol. 1134. Am. Inst. Phys., New York (2009)

    Google Scholar 

  7. Chen, X., Gu, Z.-C., Wen, X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82(15), 155138 (2010)

    Article  ADS  Google Scholar 

  8. Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83(3), 035107 (2011)

    Article  ADS  Google Scholar 

  9. Schuch, N., Pérez-García, D., Cirac, I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84(16), 165139 (2011)

    Article  ADS  Google Scholar 

  10. Bachmann, S., Michalakis, S., Nachtergaele, B., Sims, R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309(3), 835–871 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bachmann, S., Nachtergaele, B.: Product vacua with boundary states and the classification of gapped phases (2012). arXiv:1212.3718v3 [math-ph], to appear in Commun. Math. Phys.

  12. Hastings, M.: Classifying quantum phases with the torus trick (2013). arXiv:1305.6625v1 [cond-mat.str-el]

  13. Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.: Classification of topological insulators and superconductors. AIP Conf. Proc. 1134, 10 (2009)

    Article  ADS  Google Scholar 

  14. Duivenvoorden, K., Quella, T.: Topological phases of spin chains. Phys. Rev. B 87, 125145 (2013)

    Article  ADS  Google Scholar 

  15. Chen, X., Gu, Z.-C., Liu, Z.-X., Wen, X.-G.: Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013)

    Article  ADS  Google Scholar 

  16. den Nijs, M., Rommelse, K.: Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40(7), 4709 (1989)

    Article  ADS  Google Scholar 

  17. Kennedy, T., Tasaki, H.: Hidden symmetry breaking and the Haldane phase in S=1 quantum spin chains. Commun. Math. Phys. 147(3), 431–484 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Duivenvoorden, K., Quella, T.: From symmetry-protected topological order to Landau order (2013). arXiv:1304.7234

  19. Else, D.V., Bartlett, S.D., Doherty, A.C.: The hidden symmetry-breaking picture of symmetry-protected topological order (2013). arXiv:1304.0783

  20. Bachmann, S., Nachtergaele, B.: Product vacua with boundary states. Phys. Rev. B 86(3), 035149 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  21. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115(3), 477–528 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Tu, H.-H., Zhang, G.-M., Xiang, T.: Class of exactly solvable SO(n) symmetric spin chains with matrix product ground states. Phys. Rev. B 78(9), 094404 (2008)

    Article  ADS  Google Scholar 

  23. Turner, A.M., Pollmann, F., Berg, E.: Topological phases of one-dimensional fermions: an entanglement point of view. Phys. Rev. B 83, 075102 (2011)

    Article  ADS  Google Scholar 

  24. Michalakis, S.: Stability of the area law for the entropy of entanglement, pp. 1–8 (2012). arXiv:1206.6900

  25. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Naaijkens, P.: Localized endomorphisms in Kitaev’s toric code on the plane. Rev. Math. Phys. 23, 347–373 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Levin, M., Gu, Z.-C.: Braiding statistics approach to symmetry-protected topological phases. Phys. Rev. B 86, 115109 (2012)

    Article  ADS  Google Scholar 

  28. Naaijkens, P.: Kosaki-Longo index and classification of charges in 2D quantum spin models (2013). arXiv:1303.4420

  29. Haegeman, J., Michalakis, S., Nachtergaele, B., Osborne, T.J., Schuch, N., Verstraete, F.: Elementary excitations in gapped quantum spin systems. Phys. Rev. Lett. 111, 080401 (2013)

    Article  ADS  Google Scholar 

  30. Landau, L.J., Perez, J.F., Wreszinski, W.F.: Energy gap, clustering, and the Goldstone theorem in statistical mechanics. J. Stat. Phys. 26(4), 755–766 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  31. Pollmann, F., Berg, E., Turner, A.M., Oshikawa, M.: Symmetry protection of topological phases in one-dimensional quantum spin systems. Phys. Rev. B 85(7), 075125 (2012)

    Article  ADS  Google Scholar 

  32. Pollmann, F., Turner, A.: Detection of symmetry-protected topological phases in one dimension. Phys. Rev. B 86, 125441 (2012)

    Article  ADS  Google Scholar 

  33. Haegeman, J., Pérez-García, D., Cirac, I., Schuch, N.: Order parameter for symmetry-protected phases in one dimension. Phys. Rev. Lett. 109(5), 050402 (2012)

    Article  ADS  Google Scholar 

  34. Hagiwara, M., Katsumata, K., Affleck, I., Halperin, B.I., Renard, J.P.: Observation of S=1/2 degrees of freedom in an S=1 linear chain Heisenberg antiferromagnet. Phys. Rev. Lett. 65(25), 3181–3184 (1990)

    Article  ADS  Google Scholar 

  35. Affleck, I., Lieb, E.H.: A proof of part of Haldane’s conjecture on spin chains. Lett. Math. Phys. 12(1), 57–69 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  36. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124(1), 1–13 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Kennedy, T.: Exact diagonalisations of open spin-1 chains. J. Phys. Condens. Matter 2(26), 5737 (1999)

    Article  ADS  Google Scholar 

  38. Girvin, S.M., Arovas, D.P.: Hidden topological order in integer quantum spin chains. Phys. Scr. 1989(T27), 156 (1989)

    Article  Google Scholar 

  39. Aizenman, M., Nachtergaele, B.: Geometric aspects of quantum spin states. Commun. Math. Phys. 164(1), 17–63 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144(3), 443–490 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Nachtergaele, B.: Quasi-state decompositions for quantum spin systems. In: Grigelionis, B., et al. (eds.) Probability Theory and Mathematical Statistics (Proceedings of the 6th Vilnius Conference), pp. 565–590. VSP/TEV, Utrecht/Vilnius (1994)

    Google Scholar 

  42. Ueltschi, D.: Random loop representations for quantum spin systems (2013). arXiv:1301.0811v2 [math-ph]

  43. Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated pure states. J. Funct. Anal. 120(2), 511–534 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  44. Dranov, A., Kellendonk, J., Seiler, R.: Discrete time adiabatic theorems for quantum mechanical systems. J. Math. Phys. 39(3), 1340 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Nachtergaele, B., Sims, R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119–130 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Hastings, M., Koma, T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

B.N. acknowledges stimulating discussions with M. Aizenman about excess charges, spin, and all that, dating back to the collaboration [39], which turn out to be of great relevance in the context of this work. This research was supported in part by the National Science Foundation: S.B. under Grant #DMS-0757581 and B.N. under grant #DMS-1009502

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nachtergaele.

Additional information

Dedicated to Herbert Spohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmann, S., Nachtergaele, B. On Gapped Phases with a Continuous Symmetry and Boundary Operators. J Stat Phys 154, 91–112 (2014). https://doi.org/10.1007/s10955-013-0850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0850-5

Keywords

Navigation