Skip to main content
Log in

Perturbative Quantum Field Theory on Random Trees

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we start a systematic study of quantum field theory on random trees. Using precise probability estimates on their Galton–Watson branches and a multiscale analysis, we establish the general power counting of averaged Feynman amplitudes and check that they behave indeed as living on an effective space of dimension 4/3, the spectral dimension of random trees. In the “just renormalizable” case we prove convergence of the averaged amplitude of any completely convergent graph, and establish the basic localization and subtraction estimates required for perturbative renormalization. Possible consequences for an SYK-like model on random trees are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The usual spine obtained by conditioning a critical Galton–Watson tree by non-extinction corresponds to a one dimensional half-space. However it should be straightforward to symmetrize the spine to get a full one dimensional space.

  2. See however e.g. [30, 31] for statistical mechanic models on random trees and graphs.

  3. This proper time is nothing but Feynman’s parameter in high energy physics language.

  4. The graph distance d(xy) denotes the smallest number of steps on the tree needed to connect x to y.

  5. For the upper inequality, we used that for any \(m>0\),  \( 3/(3+m^2) > 1/(1+m^2)\). The lower one is obtained by comparing the Taylor expansions of both members around \(m=0\). K is chosen such that the inequality between the rational function and the exponential holds. Whereas c is independent of m, if \(m<1\), \(K>5\) is enough.

  6. In a usual theory there is no \(x_0\) dependence because of translation invariance, but for a particular tree T there is no such invariance.

  7. We refer to Ch. 2 of [1] for details on going from the discrete to continuous time propagators, the exponential factor stemming from the mass regulator.

  8. We do not try to make \(\beta \) optimal. We expect that a tighter probabilistic analysis could prove subfactorial growth in n for \({\mathbb {E}}( A_G)\).

  9. The attentive reader wondering about the factor 54 will find that it comes from the fact that \((N-4)/3\ge N/9\) for \(N\ge 6\) and that there are 6 different pairs at a \(\phi ^4\) vertex.

References

  1. Durhuus, B., Ambjørn, J., Jonsson, T.: Quantum Geometry. A Statistical Field Theory Approach. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  2. Penson, K.A., Zyczkowski, K.: Product of Ginibre matrices: Fuss-Catalan and Raney distributions. Phys. Rev. E 83(6), 061118 (2011). arXiv:1103.3453

    Article  ADS  Google Scholar 

  3. Rivasseau, V.: Loop vertex expansion for higher order interactions. Lett. Math. Phys. 108(5), 1147 (2018). arXiv:1702.07602

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Harris, T.E.: The Theory of Branching Processes. Dover Publications Inc, New York (2002)

    MATH  Google Scholar 

  5. Aldous, D.: The continuum random tree I, II and III. Ann. Probab. 19, 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aldous, D.: The continuum random tree I, II and III. Ann. Probab. 21, 248–289 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Durhuus, B., Jonsson, T., Wheater, J.F.: The spectral dimension of generic trees. J. Stat. Phys. 128(5), 1237–1260 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Barlow, M.T., Kumagai, T.: Random walk on the incipient infinite cluster on trees. Ill. J. Math. 50, 33–65 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Kumagai, T.: Random Walks on Disordered Media and Their Scaling Limits. Ecole d’été de Probabilités de Saint-Flour. Springer, New York (2010)

    MATH  Google Scholar 

  10. Kesten, H.: Subdiffusive behavior of random walk on a random cluster. Annales de l’I.H.P. Probabilités et statistiques 22, 425–487 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Croydon, D.: Convergence of simple random walks on random discrete trees to Brownian motion on the continuum random tree. Ann. l’I.H.P. Probab. Stat. 44, 987 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Croydon, D.: Volume growth and heat kernel estimates for the continuum random tree. Probab. Theory Relat. Fields 140(1–2), 207–238 (2008). arXiv:math/0612585

    Article  MathSciNet  MATH  Google Scholar 

  13. Schaeffer, G.: Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees. Electron. J. Combin. 20(electronic), 20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bouttier, J., Di Francesco, P., Guitter, E.: Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004). arXiv:math/0405099

  15. Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2-D gravity and random matrices. Phys. Rep. 254, 1 (1995). arXiv:hep-th/9306153

    Article  ADS  MathSciNet  Google Scholar 

  16. Le Gall, J.-F.: The Topological Structure of Scaling Limits of Large Planar Maps, Ecole normale supérieure de Paris (2008)

  17. Le Gall, J.-F., Paulin, F.: Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18(3), 893–918 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Gall, J.-F., Miermont, G.: Scaling limits of random trees and planar maps. In: Clay Mathematics Proceedings (2012)

  19. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013). arXiv:1104.1606

    Article  MathSciNet  MATH  Google Scholar 

  20. Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)

    Article  ADS  Google Scholar 

  21. Brézin, E., Itzykson, C., Parisi, G., Zuber, J.B.: Planar diagrams. Commun. Math. Phys. 59, 35 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric. arXiv:1507.00719

  23. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. arXiv:1605.03563

  24. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III: the conformal structure is determined. arXiv:1608.05391

  25. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103, 207 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  26. D’Hoker, E., Jackiw, R.: Classical and quantal Liouville field theory. Phys. Rev. 26(12), 3517–3542 (1982)

    ADS  MathSciNet  Google Scholar 

  27. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Ann. Inst. Henri Poincaré Probab. Stat. 54(3), 1694–1730 (2018). arXiv:1410.7318

    MathSciNet  MATH  Google Scholar 

  28. Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees. arXiv:1409.7055

  29. Miller, J., Sheffield, S.: Liouville quantum gravity spheres as matings of finite diameter trees. arXiv:1506.03804

  30. Dommers, S., Giardinà, C., van der Hofstad, R.: Ising critical exponents on random trees and graphs. arXiv:1211.3005

  31. Dommers, S.: Spin models on random graphs. Ph.D. Technische Universiteit Eindhoven (2013)

  32. Polyakov, A.M.: Mod. Phys. Lett. A 2, 893 (1987)

    Article  ADS  Google Scholar 

  33. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Mod. Phys. Lett. A 3, 819 (1988)

    Article  ADS  Google Scholar 

  34. David, F.: Mod. Phys. Lett. A 3, 1651 (1988)

    Article  ADS  Google Scholar 

  35. Distler, J., Kawai, H.: Nucl. Phys. B 321, 509 (1988)

    Article  ADS  Google Scholar 

  36. Duplantier, B.: Brownian Motion, Diverse and Undulating, Les Houches Lectures. arXiv:0705.1951

  37. Gurau, R.: Random Tensors. Oxford University Press, Oxford (2016)

    Book  MATH  Google Scholar 

  38. Gurau, R.: Invitation to Random Tensors. arXiv:1609.06439, in SIGMA special issue “Tensor Models, Formalism and Applications” (2016)

  39. Gurau, R., Ryan, J.P.: Colored tensor models—a review. SIGMA 8, 020 (2012). arXiv:1109.4812

    MathSciNet  MATH  Google Scholar 

  40. Klebanov, I.R., Popov, F., Tarnopolsky, G.: TASI lectures on large \(N\) tensor models. PoS TASI2017 004 (2018). arXiv:1808.09434

  41. Gurau, R.: The 1/N expansion of colored tensor models. Ann. Henri Poincaré 12, 829 (2011). arXiv:1011.2726

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Gurau, R., Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. EPL 95(5), 50004 (2011). arXiv:1101.4182

    Article  ADS  Google Scholar 

  43. Gurau, R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré 13, 399 (2012). arXiv:1102.5759

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174 (2011). arXiv:1105.3122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large \(N\) limit: uncoloring the colored tensor models. Phys. Rev. D 85, 084037 (2012). arXiv:1202.3637

    Article  ADS  Google Scholar 

  46. Benedetti, D., Carrozza, S., Gurau, R., Kolanowski, M.: The \(1/N\) expansion of the symmetric traceless and the antisymmetric tensor models in rank three. arXiv:1712.00249

  47. Carrozza, S.: Large \(N\) limit of irreducible tensor models: \(O(N)\) rank-\(3\) tensors with mixed permutation symmetry. arXiv:1803.02496

  48. Ferrari, F., Rivasseau, V., Valette, G.: A New Large N Expansion for General Matrix-Tensor Models. arXiv:1709.07366 [hep-th]

  49. Carrozza, S., Pozsgay, V.: SYK-like tensor quantum mechanics with \({\rm Sp} (N)\) symmetry. Nucl. Phys. B 941, 28–52 (2019). arXiv:1809.07753

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Rivasseau, V.: Quantum gravity and renormalization: the tensor track. AIP Conf. Proc. 1444, 18 (2011). arXiv:1112.5104

    ADS  Google Scholar 

  51. Rivasseau, V.: The tensor track, III. Fortsch. Phys. 62, 81 (2014). arXiv:1311.1461

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Rivasseau, V.: Random tensors and quantum gravity. SIGMA 12, 069 (2016). arXiv:1603.07278

    MathSciNet  MATH  Google Scholar 

  53. Gurau, R., Ryan, J.P.: Melons are branched polymers. Ann. Henri Poincare 15(11), 2085 (2014). arXiv:1302.4386

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Dartois, S., Gurau, R., Rivasseau, V.: Double scaling in tensor models with a quartic interaction. JHEP 1309, 088 (2013). arXiv:1307.5281

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Gurau, R., Schaeffer, G.: Regular colored graphs of positive degree. Ann. Inst. Henri Poincaré Probab. Stat. 3, 257–320 (2016). arXiv:1307.5279

    MathSciNet  MATH  Google Scholar 

  56. Bonzom, V., Gurau, R., Ryan, J.P., Tanasa, A.: The double scaling limit of random tensor models. JHEP 1409, 051 (2014). arXiv:1404.7517

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Geloun, J Ben, Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69 (2013). arXiv:1111.4997

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Geloun, J Ben, Samary, D .O.: 3D tensor field theory: renormalization and one-loop \(\beta \)-functions. Ann. Henri Poincaré 14, 1599 (2013). arXiv:1201.0176

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. 330, 581 (2014). arXiv:1303.6772

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Rivasseau, V.: The tensor theory space. Fortsch. Phys. 62(2014), 835–840 (2014). arXiv:1407.0284

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Geloun, J.B., Toriumi, R.: Renormalizable enhanced tensor field theory: the quartic melonic case. arXiv:1709.05141

  62. Carrozza, S.: Flowing in group field theory space: a review. SIGMA 12, 070 (2016). arXiv:1603.01902

    MathSciNet  MATH  Google Scholar 

  63. Geloun, J.B., Koslowski, T.A., Oriti, D., Pereira, A .D.: Functional renormalization group analysis of rank 3 tensorial group field theory: the full quartic invariant truncation. Phys. Rev. D 97(12), 126018 (2018). arXiv:1805.01619

    Article  ADS  MathSciNet  Google Scholar 

  64. Eichhorn, A., Koslowski, T., Lumma, J., Pereira, A.D.: Towards background independent quantum gravity with tensor models. arXiv:1811.00814

  65. Sachdev, S., Ye, J.: Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993). arXiv:cond-mat/9212030

    Article  ADS  Google Scholar 

  66. Kitaev, A.: A simple model of quantum holography, KITP strings seminar and Entanglement 2015 program (Feb. 12, April 7, and May 27, 2015)

  67. Maldacena, J., Stanford, D.: Remarks on the Sachdev–Ye–Kitaev model. Phys. Rev. D 94(10), 106002 (2016). arXiv:1604.07818

    Article  ADS  MathSciNet  Google Scholar 

  68. Polchinski, J., Rosenhaus, V.: The spectrum in the Sachdev–Ye–Kitaev model. JHEP 04, 001 (2016). arXiv:1601.06768

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Witten, E.: An SYK-Like Model Without Disorder. arXiv:1610.09758

  70. Gurau, R.: The complete \(1/N\) expansion of a SYK-like tensor model. Nucl. Phys. B 916, 386–401 (2017). arXiv:1611.04032

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Carrozza, S., Tanasa, A.: \(O(N)\) random tensor models. Lett. Math. Phys. 106(11), 1531–1559 (2016). arXiv:1512.06718

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Klebanov, I.R., Tarnopolsky, G.: Uncolored random tensors, melon diagrams, and the Sachdev–Ye–Kitaev models. Phys. Rev. D 95(4), 046004 (2017). arXiv:1611.08915

    Article  ADS  MathSciNet  Google Scholar 

  73. Halmagyi, N., Mondal, S.: Tensor Models for Black Hole Probes. arXiv:1711.04385

  74. Maldacena, J., Qi, X.L.: Eternal traversable wormhole. arXiv:1804.00491

  75. Ferrari, F., Massolo, F.I.S.: On Phases Of Melonic Quantum Mechanics. arXiv:1903.06633

  76. Giombi, S., Klebanov, I.R., Tarnopolsky, G.: Bosonic tensor models at large \(N\) and small \(\epsilon \). Phys. Rev. D 96(10), 106014 (2017). arXiv:1707.03866

    Article  ADS  MathSciNet  Google Scholar 

  77. Vasiliev, M.A.: From Coxeter higher-spin theories to strings and tensor models. JHEP 1808, 051 (2018). arXiv:1804.06520

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Benedetti, D., Carrozza, S., Gurau, R., Sfondrini, A.: Tensorial Gross–Neveu models. JHEP 1801, 003 (2018). arXiv:1710.10253

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Benedetti, D., Delporte, N.: Phase diagram and fixed points of tensorial Gross–Neveu models in three dimensions. JHEP 1901, 218 (2019). arXiv:1810.04583

    Article  ADS  MathSciNet  Google Scholar 

  80. Benedetti, D., Gurau, R., Harribey, S.: Line of fixed points in a bosonic tensor model. arXiv:1903.03578 [hep-th]

  81. Delporte, N., Rivasseau, V.: The Tensor Track V: Holographic Tensors (2018). arXiv:1804.11101

  82. Maldacena, J.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Aharony, O., Gubser, S., Maldacena, J., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rep. 323(3–4), 183–386 (1999). arXiv:hep-th/9905111

    ADS  MathSciNet  MATH  Google Scholar 

  84. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on completely convergent Euclidean Feynman Graphs. Commun. Math. Phys. 98, 273 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on renormalized Feynman graphs. Commun. Math. Phys. 100, 23 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton University Press, Princeton (1991)

    Book  Google Scholar 

  87. Gurau, R., Rivasseau, V., Sfondrini, A.: Renormalization: an advanced overview. arXiv:1401.5003

  88. Chandra, A., Hairer, M.: An analytic BPHZ theorem for regularity structures. arXiv:1612.08138

  89. Hairer, M.: An analyst’s take on the BPHZ theorem. arXiv:1704.08634

  90. Benfatto, G., Gallavotti, G.: Renormalization Group. Princeton University Press, Princeton (1995)

    Book  MATH  Google Scholar 

  91. Mastropietro, V.: Non-Perturbative Renormalization. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  92. Salmhofer, M.: Renormalization: An Introduction. Springer, New York (1999)

    Book  MATH  Google Scholar 

  93. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  94. Durhuus, B., Jonsson, T., Wheater, J.: Random walks on combs. J. Phys. A39, 1009–1038 (2006). arXiv:hep-th/0509191

    ADS  MathSciNet  MATH  Google Scholar 

  95. Brydges, D.C., Mitter, P.K., Scoppola, B.: Critical \(\phi ^4_{3, \epsilon }\). Commun. Math. Phys. 240, 281–327 (2003)

    Article  ADS  MATH  Google Scholar 

  96. Abdesselam, Abdelmalek: A complete renormalization group trajectory between two fixed points. Commun. Math. Phys. 276, 727–772 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Gross, D.J., Rosenhaus, V.: A line of CFTs: from generalized free fields to SYK. JHEP 07, 086 (2017). arXiv:1706.07015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. Abraham, R., Debs, P.: Penalization of Galton–Watson processes. arXiv:1803.10611 [math.PR]

Download references

Acknowledgements

We thank the organizers of the workshop “Higher spins and holography” for their invitation and the Erwin Schrödinger Institute for the stimulating scientific atmosphere provided during this workshop where part of this work was elaborated. N.D. would like to thank J. Ben Geloun and T. El Khaouja for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Delporte.

Additional information

Communicated by M. Salmhofer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delporte, N., Rivasseau, V. Perturbative Quantum Field Theory on Random Trees. Commun. Math. Phys. 381, 857–887 (2021). https://doi.org/10.1007/s00220-020-03874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03874-2

Navigation