Skip to main content
Log in

Specification and Towers in Shift Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that a shift space on a finite alphabet with a non-uniform specification property can be modeled by a strongly positive recurrent countable-state Markov shift to which every equilibrium state lifts. In addition to uniqueness of the equilibrium state, this gives strong statistical properties including the Bernoulli property, exponential decay of correlations, central limit theorem, and analyticity of pressure, which are new even for uniform specification. We give applications to shifts of quasi-finite type, synchronised and coded shifts, and factors of \({\beta}\)-shifts and S-gap shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila A., Hubert P., Skripchenko A.: Diffusion for chaotic plane sections of 3-periodic surfaces. Invent. Math. 206(1), 109–146 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Burns, K., Climenhaga, V., Fisher, T., Thompson, D.J.: Unique equilibrium states for geodesic flows in non-positive curvature. Geom. Funct. Anal. 28(5), 1209–1259 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bridgeman M., Canary R., Labourie F., Sambarino A.: The pressure metric for Anosov representations. Geom. Funct. Anal. 25(4), 1089–1179 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bertrand, A.: Specification, synchronisation, average length. In: Coding Theory and Applications (Cachan, 1986), Volume 311 of Lecture Notes in Comput. Sci., pp. 86–95. Springer, Berlin (1988)

    Chapter  Google Scholar 

  5. Bufetov A.I., Gurevich B.M.: Existence and uniqueness of a measure with maximal entropy for the Teichmüller flow on the moduli space of abelian differentials. Math. Sb. 202(7), 3–42 (2011)

    Article  MathSciNet  Google Scholar 

  6. Blanchard F., Hansel G.: Systèmes codés. Theor. Comput. Sci. 44(1), 17–49 (1986)

    Article  Google Scholar 

  7. Bruin H., Leplaideur R.: Renormalization, thermodynamic formalism and quasi-crystals in subshifts. Commun. Math. Phys. 321(1), 209–247 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bowen R.: The equidistribution of closed geodesics. Am. J. Math. 94, 413–423 (1972)

    Article  MathSciNet  Google Scholar 

  9. Bowen R.: Some systems with unique equilibrium states. Math. Syst. Theory 8(3), 193–202 (1974)

    Article  MathSciNet  Google Scholar 

  10. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. In: Lecture Notes in Mathematics, Vol. 470. Springer, Berlin-New York (1975)

  11. Bowen, R.: On Axiom A diffeomorphisms. In: Regional Conference Series in Mathematics, American Mathematical Society, Providence, R.I., No. 35 (1978)

  12. Boyle, M.: Open problems in symbolic dynamics. In: Geometric and Probabilistic Structures in Dynamics, Volume 469 of Contemp. Math., pp. 69–118. Amer. Math. Soc., Providence, RI (2008)

  13. Buzzi J., Sarig O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod. Theory Dyn. Syst. 23(5), 1383–1400 (2003)

    Article  MathSciNet  Google Scholar 

  14. Barreira L., Saussol B., Schmeling J.: Higher-dimensional multifractal analysis. J. Math. Pures Appl. (9) 81(1), 67–91 (2002)

    Article  MathSciNet  Google Scholar 

  15. Bruin H., Todd M.: Equilibrium states for interval maps: the potential \({-t\log\vert Df\vert }\). Ann. Sci. Éc. Norm. Supér. (4) 42(4), 559–600 (2009)

    Article  MathSciNet  Google Scholar 

  16. Buzzi J.: Intrinsic ergodicity of affine maps in [0,1]d. Monatsh. Math. 124(2), 97–118 (1997)

    Article  MathSciNet  Google Scholar 

  17. Buzzi J.: Entropy of equilibrium measures of continuous piecewise monotonic maps. Stoch. Dyn. 4(1), 84–94 (2004)

    Article  MathSciNet  Google Scholar 

  18. Buzzi J.: Subshifts of quasi-finite type. Invent. Math. 159(2), 369–406 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. Climenhaga, V., Cyr, V.: Positive entropy equilibrium states, 16p. arXiv:1708.02272

  20. Climenhaga, V., Fisher, T., Thompson, D.J.: Equilibrium states forMañé diffeomorphisms. Ergod. Theory Dyn. Syst. to appear, 28p. arXiv:1703.05722

  21. Climenhaga V., Fisher T., Thompson D.J.: Unique equilibrium states for Bonatti–Viana diffeomorphisms. Nonlinearity 31(6), 2532–2570 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Conrad, S.: A coded shift with a Hölder potential that is not hyperbolic. preprint

  23. Climenhaga, V., Pavlov, R.: One-sided almost specification and intrinsic ergodicity. Ergod. Theory Dyn. Syst. 27p. to appear

  24. Cyr V., Sarig O.: Spectral gap and transience for Ruelle operators on countable Markov shifts. Commun. Math. Phys. 292(3), 637–666 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Climenhaga V., Thompson D.J.: Intrinsic ergodicity beyond specification: \({\beta}\)-shifts, S-gap shifts, and their factors. Isr. J. Math. 192(2), 785–817 (2012)

    Article  MathSciNet  Google Scholar 

  26. Climenhaga V., Thompson D.J.: Equilibrium states beyond specification and the Bowen property. J. Lond. Math. Soc. (2) 87(2), 401–427 (2013)

    Article  MathSciNet  Google Scholar 

  27. Climenhaga V., Thompson D.J.: Intrinsic ergodicity via obstruction entropies. Ergod. Theory Dyn. Syst. 34(6), 1816–1831 (2014)

    Article  MathSciNet  Google Scholar 

  28. Climenhaga V., Thompson D.J.: Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Adv. Math. 303, 745–799 (2016)

    Article  MathSciNet  Google Scholar 

  29. Climenhaga V., Thompson D.J., Yamamoto K.: Large deviations for systems with non-uniform structure. Trans. Am. Math. Soc. 369(6), 4167–4192 (2017)

    Article  MathSciNet  Google Scholar 

  30. Daon Y.: Bernoullicity of equilibrium measures on countable Markov shifts. Discrete Contin. Dyn. Syst. 33(9), 4003–4015 (2013)

    Article  MathSciNet  Google Scholar 

  31. Fiebig, D., Fiebig, U.-R.: Covers for coded systems. In: Symbolic Dynamics and Its Applications (New Haven, CT, 1991), volume 135 of Contemp. Math., pp. 139–179. Amer. Math. Soc., Providence, RI (1992)

  32. Gouëzel S.: Regularity of coboundaries for nonuniformly expanding Markov maps. Proc. Am. Math. Soc. 134(2), 391–401 (2006)

    Article  MathSciNet  Google Scholar 

  33. Hofbauer F.: \({\beta }\)-shifts have unique maximal measure. Monatsh. Math. 85(3), 189–198 (1978)

    Article  MathSciNet  Google Scholar 

  34. Hofbauer F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Isr. J. Math. 34(3), 213–237 (1979) (1980)

    Article  MathSciNet  Google Scholar 

  35. Hofbauer F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II. Isr. J. Math. 38(1-2), 107–115 (1981)

    Article  MathSciNet  Google Scholar 

  36. Inoquio-Renteria I., Rivera-Letelier J.: A characterization of hyperbolic potentials of rational maps. Bull. Braz. Math. Soc. (N.S.) 43(1), 99–127 (2012)

    Article  MathSciNet  Google Scholar 

  37. Iommi G., Todd M.: Natural equilibrium states for multimodal maps. Commun. Math. Phys. 300(1), 65–94 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. Katok A.: Entropy and closed geodesics. Ergod. Theory Dyn. Syst. 2(3-4), 339–365 (1982) (1983)

    Article  MathSciNet  Google Scholar 

  39. Keller G.: Lifting measures to Markov extensions. Monatsh. Math. 108(2-3), 183–200 (1989)

    Article  MathSciNet  Google Scholar 

  40. Kifer Y.: Large deviations in dynamical systems and stochastic processes. Trans. Am. Math. Soc. 321(2), 505–524 (1990)

    Article  MathSciNet  Google Scholar 

  41. Kitchens, B.P.: One-sided, two-sided and countable state Markov shifts. In: Symbolic Dynamics. Universitext. Springer, Berlin(1998)

    Google Scholar 

  42. Knieper G.: The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds. Ann. Math. (2) 148(1), 291–314 (1998)

    Article  MathSciNet  Google Scholar 

  43. Kwapisz J.: Cocyclic subshifts. Math. Z. 234(2), 255–290 (2000)

    Article  MathSciNet  Google Scholar 

  44. Kwapisz J.: Transfer operator, topological entropy and maximal measure for cocyclic subshifts. Ergod. Theory Dyn. Syst. 24(4), 1173–1197 (2004)

    Article  MathSciNet  Google Scholar 

  45. Lind D., Marcus B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  46. Li H., Rivera-Letelier J.: Equilibrium states of weakly hyperbolic one-dimensional maps for Hölder potentials. Commun. Math. Phys. 328(1), 397–419 (2014)

    Article  ADS  Google Scholar 

  47. McMullen C.T.: Thermodynamics, dimension and the Weil–Petersson metric. Invent. Math. 173(2), 365–425 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  48. Ornstein D.: Factors of Bernoulli shifts are Bernoulli shifts. Adv. Math. 5, 349–364 (1970) (1970)

    Article  MathSciNet  Google Scholar 

  49. Petersen, K.: Ergodic theory. In: Volume~2 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1989). Corrected reprint of the 1983 original

  50. Parry W., Pollicott M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 268, 187–188 (1990)

    MathSciNet  MATH  Google Scholar 

  51. Pesin Y., Senti S.: Equilibrium measures for maps with inducing schemes. J. Mod. Dyn. 2(3), 397–430 (2008)

    Article  MathSciNet  Google Scholar 

  52. Pesin, Y., Senti, S., Zhang, K.: Thermodynamics of towers of hyperbolic type. Trans. Am. Math. Soc. 368(12), 8519–8552 (2016)

    Article  MathSciNet  Google Scholar 

  53. Ruelle D.: A measure associated with axiom-A attractors. Am. J. Math. 98(3), 619–654 (1976)

    Article  MathSciNet  Google Scholar 

  54. Ruelle D.: Thermodynamic formalism for maps satisfying positive expansiveness and specification. Nonlinearity 5(6), 1223–1236 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  55. Sarig O.M.: Thermodynamic formalism for countable Markov shifts. Ergod. Theory Dyn. Syst. 19(6), 1565–1593 (1999)

    Article  MathSciNet  Google Scholar 

  56. Sarig O.M.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217(3), 555–577 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  57. Sarig O.M.: Symbolic dynamics for surface diffeomorphisms with positive entropy. J. Am. Math. Soc. 26(2), 341–426 (2013)

    Article  MathSciNet  Google Scholar 

  58. Sarig, O.M.: Thermodynamic formalism for countable Markov shifts. In: Hyperbolic Dynamics, Fluctuations and Large Deviations, Volume~89 of Proc. Sympos. Pure Math., pp. 81–117. Amer. Math. Soc., Providence, RI (2015)

  59. Schmeling J.: Symbolic dynamics for \({\beta}\)-shifts and self-normal numbers. Ergod. Theory Dyn. Syst. 17(3), 675–694 (1997)

    Article  MathSciNet  Google Scholar 

  60. Sinaĭ J.G.: Gibbs measures in ergodic theory. Uspehi Mat. Nauk 27(4(166), 21–64 (1972)

    MathSciNet  MATH  Google Scholar 

  61. Thomsen K.: On the ergodic theory of synchronized systems. Ergod. Theory Dyn. Syst. 26(4), 1235–1256 (2006)

    Article  MathSciNet  Google Scholar 

  62. Thomine D.: A spectral gap for transfer operators of piecewise expanding maps. Discrete Contin. Dyn. Syst. 30(3), 917–944 (2011)

    Article  MathSciNet  Google Scholar 

  63. Walters P.: Equilibrium states for \({\beta }\)-transformations and related transformations. Math. Z. 159(1), 65–88 (1978)

    Article  MathSciNet  Google Scholar 

  64. Walters P.: An introduction to Ergodic Theory, volume~79 of Graduate Texts in Mathematics. Springer, New York-Berlin (1982)

    Book  Google Scholar 

  65. Young L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. (2) 147(3), 585–650 (1998)

    Article  MathSciNet  Google Scholar 

  66. Young L.-S.: Recurrence times and rates of mixing. Isr. J. Math. 110, 153–188 (1999)

    Article  MathSciNet  Google Scholar 

  67. Zweimüller R.: Invariant measures for general(ized) induced transformations. Proc. Am. Math. Soc. 133(8), 2283–2295 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

I am grateful to the anonymous referees for many comments that improved the exposition and for spotting errors in earlier versions of the result on factors and of Lemma 7.5; the latter, which was also pointed out to me by Qu Congcong, necessitated a change in the formulation of condition [I] from previous versions. I am also grateful to Omri Sarig for clarifying aspects of strong positive recurrence as they appear in Sect. 2.1, and to Dominik Kwietniak for introducing me to cocyclic subshifts and [Kwa00, Kwa04]. This work was partially supported by NSF grants DMS-1362838 and DMS-1554794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaughn Climenhaga.

Additional information

Communicated by C. Liverani

The author is partially supported by NSF Grants DMS-1362838 and DMS-1554794.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Climenhaga, V. Specification and Towers in Shift Spaces. Commun. Math. Phys. 364, 441–504 (2018). https://doi.org/10.1007/s00220-018-3265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3265-y

Navigation