Skip to main content
Log in

Random Markov processes for countable and uncountable alphabets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we explore two notions of stationary processes — uniform martingales and random Markov processes. We show that every stationary process on a countable alphabet that is a uniform martingale and is dominated by a finite measure on that alphabet is also a random Markov process, and that the random look-back times and associated coupling can be chosen so that the distribution on the present given both the n-past and a look-back time of n is ‘deterministic’: all probabilities are in {0, 1}. In the case of finite alphabets, those random Markov processes for which the look-back time can be chosen with finite expected value are characterized. For stationary processes on an uncountable alphabet, a stronger condition is also considered which is sufficient to imply that a process is a random Markov processes. In addition, a number of examples are given throughout to show the sharpness of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Alexander and S. Kalikow, Random stationary processes, Ann. Probab. 20 (1992), 1174–1198.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Berbee, Chains with infinite connections: uniqueness and Markov representation, Probab. Theory Related Fields 76 (1987), 243–253.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Berger, C. Hoffman and V. Sidoravicius, Nonuniqueness for specifications in 2+e, ArXiv e-prints (2008).

    Google Scholar 

  4. M. Bramson and S. Kalikow, Nonuniqueness in g-functions, Israel J. Math. 84 (1993), 153–160.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Bühlmann and A. J. Wyner, Variable length Markov chains, Ann. Statist. 27 (1999), 480–513.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Doeblin and R. Fortet, Sur des châines à liaisons complètes, Bull. Soc. Math. France 65 (1937), 132–148.

    MathSciNet  MATH  Google Scholar 

  7. F. Ferrari and A. Wyner, Estimation of general stationary processes by variable length Markov chains, Scand. J. Statist. 30 (2003), 459–480.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Galves and F. Leonardi, Exponential inequalities for empirical unbounded context trees, in In and Out of Equilibrium. 2, Progr. Probab., Vol. 60, Birkhäuser, Basel, 2008, pp. 257–269.

    Google Scholar 

  9. P. Hulse, An example of non-unique g-measures, Ergodic Theory Dynam. Systems 26 (2006), 439–445.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Johansson, A. Öberg and M. Pollicott, Countable state shifts and uniqueness of gmeasures, Amer. J. Math. 129 (2007), 1501–1511.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Kalikow, Random Markov processes and uniform martingales, Israel J. Math. 71 (1990), 33–54.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Kalikow, Infinite partitions and Rokhlin towers, Ergodic Theory and Dynamical Systems 32 (2012), 707–738.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Kalikow, Y. Katznelson and B. Weiss, Finitarily deterministic generators for zero entropy systems, Israel J. Math. 79 (1992), 33–45.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Kalikow and R. McCutcheon, An Outline of Ergodic Theory, Cambridge Studies in Advanced Mathematics, Vol. 122, Cambridge University Press, Cambridge, 2010.

    Book  MATH  Google Scholar 

  15. M. Keane, Strongly mixing g-measures, Invent. Math. 16 (1972), 309–324.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Maillard, Introduction to Chains with Complete Connections, Lecture notes, 2007 <https://www.i2m.univ-amu.fr/maillard/Greg/Publications files/main.pdf>.

    Google Scholar 

  17. R. D. Mauldin and M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math. 125 (2001), 93–130.

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Onicescu and G. Mihoc, Sur les châines statistiques, C. R. Acad. Sci. Paris 200 (1935), 511–512.

    MATH  Google Scholar 

  19. W. Parry, Generators and strong generators in ergodic theory, Bull. Amer. Math. Soc. 72 (1966), 294–296.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Parry, Entropy and Generators in Ergodic Theory, W. A. Benjamin, Inc., New York–Amsterdam, 1969.

    MATH  Google Scholar 

  21. M. Rahe, On a class of generalized baker’s transformations, Canad. J. Math. 45 (1993), 638–649.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Rahe, On finite coding factors of a class of random Markov chains, Canad. Math. Bull. 37 (1994), 399–407.

    Article  MathSciNet  MATH  Google Scholar 

  23. V. A. Rohlin, Generators in ergodic theory. II, Vestnik Leningrad. Univ. 20 (1965), 68–72.

    MathSciNet  Google Scholar 

  24. O. M. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems 19 (1999), 1565–1593.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal Bushaw.

Additional information

The second author was supported in part by the Heilbronn Institute for Mathematical Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushaw, N., Gunderson, K. & Kalikow, S. Random Markov processes for countable and uncountable alphabets. Isr. J. Math. 216, 181–214 (2016). https://doi.org/10.1007/s11856-016-1407-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1407-5

Navigation