Skip to main content
Log in

Natural Equilibrium States for Multimodal Maps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of the thermodynamic formalism for a class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann. For a map in this class, we prove existence and uniqueness of equilibrium states for the geometric potentials −t log |Df|, for the largest possible interval of parameters t. We also study the regularity and convexity properties of the pressure function, completely characterising the first order phase transitions. Results concerning the existence of absolutely continuous invariant measures with respect to the Lebesgue measure are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedicks M., Carleson L.: On iterations of 1 − ax 2 on (−1, 1). Ann. of Math. 122, 1–25 (1985)

    Article  MathSciNet  Google Scholar 

  2. Billingsley P.: Probability and measure. Second edition. John Wiley and Sons, New York (1986)

    MATH  Google Scholar 

  3. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer Lect. Notes in Math. 470, Berlin-Heidelberg-New York: Springer, 1975

  4. Brucks, K.M., Bruin, H.: Topics from one-dimensional dynamics. London Mathematical Society Student Texts 62. Cambridge: Cambridge University Press, 2004

  5. Bruin H.: Induced maps, Markov extensions and invariant measures in one–dimensional dynamics. Commun. Math. Phys. 168, 571–580 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bruin H.: Minimal Cantor systems and unimodal maps. J. Difference Eq. Appl. 9, 305–318 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bruin H., Keller G.: Equilibrium states for S-unimodal maps. Erg. Th. Dynam. Syst. 18, 765–789 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bruin H., Keller G., Nowicki T., van Strien S.: Wild Cantor attractors exist. Ann. of Math. 143(2), 97–130 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bruin H., van Strien S.: Expansion of derivatives in one–dimensional dynamics. Israel. J. Math. 137, 223–263 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bruin H., Todd M.: Equilibrium states for potentials with \({\sup \varphi-\inf \varphi < h_{top}(f)}\) . Commun. Math. Phys. 283, 579–611 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Bruin H., Todd M.: Equilibrium states for interval maps: the potential −tlog|Df|. Ann. Sci. École Norm. Sup. 42(4), 559–600 (2009)

    MATH  MathSciNet  Google Scholar 

  12. Bruin H., Todd M.: Return time statistics for invariant measures for interval maps with positive Lyapunov exponent. Stoch. Dyn. 9, 81–100 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Buzzi J., Sarig O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Erg. Th. Dynam. Systs. 23, 1383–1400 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cederval, S.: Invariant measures and correlation decay for S-multimodal interval maps. PhD thesis, Imperial College, 2006

  15. Cortez M.I., Rivera-Letelier J.: Invariant measures of minimal post-critical sets of logistic maps. Israel J. Math. 176, 157–193 (2010)

    Article  MATH  Google Scholar 

  16. Denker M., Urbanski M.: Ergodic theory of equilibrium states for rational maps. Nonlinearity 4, 103–134 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Dobbs, N.: Critical points, cusps and induced expansion in dimension one. Thesis, Université Paris-Sud, Orsay, 2006

  18. Dobbs N.: Visible measures of maximal entropy in dimension one. Bull. Lond. Math. Soc. 39, 366–376 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dobbs N.: Renormalisation induced phase transitions for unimodal maps. Commun. Math. Phys. 286, 377–387 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Dobbs, N.: On cusps and flat tops. http://arXiv.org/abs/0801.3815v1[math.DS], 2008

  21. Dobrušhin R.L.: Description of a random field by means of conditional probabilities and conditions for its regularity. Teor. Verojatnost. i Primenen 13, 201–229 (1968)

    MathSciNet  Google Scholar 

  22. Ellis, R.S.: Entropy, large deviations, and statistical mechanics. Classics in Mathematics, Berlin: Springer-Verlag, 2006

  23. Frietas J., Todd M.: Statistical stability of equilibrium states for interval maps. Nonlinearity 22, 259–281 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. Graczyk J., Swia̧tek G.: Generic hyperbolicity in the logistic family. Ann. Math. 146, 1–52 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gurevič B.M.: Topological entropy for denumerable Markov chains. Dokl. Akad. Nauk SSSR 10, 911–915 (1969)

    Google Scholar 

  26. Gurevič B.M.: Shift entropy and Markov measures in the path space of a denumerable graph. Dokl. Akad. Nauk SSSR 11, 744–747 (1970)

    Google Scholar 

  27. Hofbauer F.: Piecewise invertible dynamical systems. Probab. Theory Relat. Fields 72, 359–386 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jakobson M.V.: Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81, 39–88 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Jenkinson O.: Ergodic optimization. Discrete Contin. Dyn. Syst. 15, 197–224 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Katok, A., Hasselblat, B.: Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge: Cambridge University Press, 1995

  31. Keller G.: Lifting measures to Markov extensions. Monatsh. Math. 108, 183–200 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Keller, G.: Equilibrium states in ergodic theory. London Mathematical Society Student Texts, 42. Cambridge: Cambridge University Press, 1998

  33. Keller, G., Pierre, M. St.: Topological and measurable dynamics of Lorenz maps. In: Ergodic theory, analysis, and efficient simulation of dynamical systems, Berlin: Springer, 2001, pp. 333–361

  34. Ledrappier F.: Some properties of absolutely continuous invariant measures on an interval. Erg. Th. Dynam. Syst. 1, 77–93 (1981)

    MATH  MathSciNet  Google Scholar 

  35. Lyubich M.: Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. of Math. 140(2), 347–404 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lyubich M.: Dynamics of quadratic polynomials I-II. Acta Math. 178, 185–297 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Makarov N., Smirnov S.: On thermodynamics of rational maps. II. Non-recurrent maps. J. London Math. Soc. 67(2), 417–432 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mauldin R., Urbański M.: Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. 73(3), 105–154 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. Mauldin R., Urbański M.: Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125, 93–130 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Melbourne I., Nicol M.: Large deviations for nonuniformly hyperbolic systems. Trans. Amer. Math. Soc. 360, 6661–6676 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. de Melo, W., van Strien, S.: One dimensional dynamics. Ergebnisse Series 25, Berlin-Heidelberg-New York: Springer–Verlag, 1993

  42. Nowicki T., Sands D.: Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math. 132, 633–680 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Pesin, Y.: Dimension Theory in Dynamical Systems. Cambridge: Cambridge Univ. Press, 1997

  44. Pesin Y., Senti S.: Equilibrium measures for maps with inducing schemes. J. Mod. Dyn. 2, 1–31 (2008)

    MathSciNet  Google Scholar 

  45. Pomeau Y., Manneville P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  46. Prellberg T., Slawny J.: Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions. J. Stat. Phys. 66, 503–514 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Przytycki F.: Lyapunov characteristic exponents are nonnegative. Proc. Amer. Math. Soc. 119, 309–317 (1993)

    MATH  MathSciNet  Google Scholar 

  48. Przytycki, F., Rivera-Letelier, J.: Nice inducing schemes and the thermodynamics of rational maps. Preprint, http://arXiv.org/abs/0806.4385v2[math.DS], 2008

  49. Rey-Bellet L., Young L.-S.: Large deviations in non-uniformly hyperbolic dynamical systems. Erg. Th. Dynam. Syst. 28, 587–612 (2008)

    MATH  MathSciNet  Google Scholar 

  50. Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, No. 28, Princeton, N.J.: Princeton University Press, 1970

  51. Rovella A.: The dynamics of perturbations of the contracting Lorenz attractor. Bol. Soc. Brasil. Mat. (N.S.) 24, 233–259 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  52. Royden H.L.: Real analysis Third edition. Macmillan Publishing Company, New York (1988)

    MATH  Google Scholar 

  53. Ruelle D.: An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat. 9, 83–87 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  54. Ruelle, D.: Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics. With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. Encyclopedia of Mathematics and its Applications, 5. Reading, MA: Addison-Wesley Publishing Co., 1978

  55. Sarig O.: Thermodynamic formalism for countable Markov shifts. Erg. Th. Dynam. Syst. 19, 1565–1593 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  56. Sarig O.: On an example with topological pressure which is not analytic. C.R. Acad. Sci. Serie I: Math. 330, 311–315 (2000)

    MATH  MathSciNet  ADS  Google Scholar 

  57. Sarig O.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217, 555–577 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. Sarig O.: Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131, 1751–1758 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Sarig O.: Critical exponents for dynamical systems. Commun. Math. Phys. 267, 631–667 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. Sinai J.G.: Gibbs measures in ergodic theory. Uspehi Mat. Nauk 27, 21–64 (1972)

    MATH  MathSciNet  Google Scholar 

  61. Todd, M.: Multifractal analysis for multimodal maps. Preprint http://arXiv.org/abs/0809.1074v3[math-DS], 2009

  62. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79, Berlin-Heidelberg-New York: Springer, 1981

  63. Young L.S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godofredo Iommi.

Additional information

Communicated by G. Gallavotti

GI was partially supported by Proyecto Fondecyt 11070050 and by Research Network on Low Dimensional Systems, PBCT/CONICYT, Chile. MT is supported by FCT grant SFRH/BPD/26521/2006 and also by FCT through CMUP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iommi, G., Todd, M. Natural Equilibrium States for Multimodal Maps. Commun. Math. Phys. 300, 65–94 (2010). https://doi.org/10.1007/s00220-010-1112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1112-x

Keywords

Navigation