Skip to main content
Log in

An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier–Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Onsager L.: Statistical hydrodynamics. Nuovo Cim. Suppl. VI, 279–287 (1949)

    Article  MathSciNet  Google Scholar 

  2. Eyink G.L.: Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D 78(3–4), 222–240 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Constantin P., Weinan E., Titi E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Duchon J., Robert R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13(1), 249 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Eyink G.L., Sreenivasan K.R.: Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78, 87–135 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. De Lellis C., Székelyhidi L. Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195, 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Lellis C., Székelyhidi L. Jr: The h-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. 49(3), 347–375 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buckmaster T.: Onsager’s conjecture almost everywhere in time. Commun. Math. Phys. 333(3), 1175–1198 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Isett P.: A proof of Onsager’s conjecture. arXiv preprint arXiv:1608.08301 (2016)

  10. Feireisl E., Gwiazda P., Świerczewska-Gwiazda A., Wiedemann E.: Regularity and energy conservation for the compressible Euler equations. Arch. Ration. Mech. Anal. 223(3), 1375–1395 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Landau L., Lifshitz E.: Fluid Mechanics, 2nd edn. Pergamon Press, New York (1987)

    Google Scholar 

  12. de Groot S., Mazur P.: Non-equilibrium Thermodynamics. Dover, New York (1984)

    MATH  Google Scholar 

  13. Gallavotti G.: Foundations of Fluid Dynamics. Springer, Berlin (2013)

    MATH  Google Scholar 

  14. Feireisl E.: Dynamics of Viscous Compressible Fluids, vol. 26. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  15. Feireisl E., Novotnyˋ A.: Inviscid incompressible limits of the full Navier–Stokes–Fourier system. Commun. Math. Phys. 321(3), 605–628 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lions P.-L.: Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  17. Martin-Löf, A.: Statistical mechanics and the foundations of thermodynamics. Lecture Notes in Physics. Springer, Berlin (1979)

  18. Ruelle D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  19. Callen H.: Thermodynamics and an Introduction to Thermostatistics. Wiley, London (1985)

    MATH  Google Scholar 

  20. Evans, L.C.: Entropy and Partial Differential Equations. http://math.berkeley.edu/evans/entropy.and.PDE.pdf (2004)

  21. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  22. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  23. Rudin W.: Real and Complex Analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  24. Johnson B.M.: Closed-form shock solutions. J. Fluid Mech. 745, R1 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Eyink, G.L., Drivas, T.D.: Cascades and dissipative anomalies in compressible fluid turbulence. arXiv preprint arXiv:1704.03532 (2017)

  26. Kim J., Ryu D.: Density power spectrum of compressible hydrodynamic turbulent flows. Astrophys. J. Lett. 630(1), L45 (2005)

    Article  ADS  Google Scholar 

  27. Oberguggenberger M.: Multiplication of Distributions and Applications to Partial Differential Equations, Volume 259 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, London (1992)

    Google Scholar 

  28. Triebel H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  29. Aluie H.: Scale decomposition in compressible turbulence. Physica D 247(1), 54–65 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Eyink, G.L., Drivas, T.D.: Cascades and dissipative anomalies in relativistic fluid turbulence. arXiv preprint arXiv:1704.03541 (2017)

  31. Isett, P.: Regularity in time along the coarse scale flow for the incompressible Euler equations. arXiv preprint arXiv:1307.0565 (2013)

  32. Isett, P.: Hölder continuous Euler flows in three dimensions with compact support in time. arXiv preprint arXiv:1211.4065 (2012)

  33. Isett P., Oh S.-J.: On nonperiodic Euler flows with Hölder regularity. Arch. Ration. Mech. Anal. 221((2), 725–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ziemer W.: Weakly Differentiable Functions. Graduate Text in Mathematics 120. Springer, Berlin (1989)

    Book  Google Scholar 

  35. Showalter R.: Hilbert Space Methods in Partial Differential Equations. Dover, New York (2011)

    MATH  Google Scholar 

  36. Rudin W.: Functional Analysis. McGraw-Hill, New York (2006)

    MATH  Google Scholar 

  37. Huang K.: Introduction to Statistical Physics. CRC Press, Boca Raton (2009)

    Google Scholar 

  38. Stuart A., Ord K.: Kendall’s Advanced Theory of Statistics: Volume 1: Distribution Theory. Wiley, London (2009)

    MATH  Google Scholar 

  39. Favre, A.: Statistical equations of turbulent gases. In: Lavrentiev, M.A. (ed.) Problems of Hydrodynamics and Continuum Mechanics, pp. 37–44. SIAM, Philadelphia (1969)

  40. Eyink G.L.: Turbulent general magnetic reconnection. Astrophys. J. 807(2), 137 (2015)

    Article  ADS  Google Scholar 

  41. Eyink, G.L.: Turbulence Theory. Course notes. http://www.ams.jhu.edu/~eyink/Turbulence/notes/ (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore D. Drivas.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drivas, T.D., Eyink, G.L. An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations. Commun. Math. Phys. 359, 733–763 (2018). https://doi.org/10.1007/s00220-017-3078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3078-4

Navigation