Skip to main content
Log in

Rotational KMS States and Type I Conformal Nets

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider KMS states on a local conformal net on S 1 with respect to rotations. We prove that, if the conformal net is of type I, namely if it admits only type I DHR representations, then the extremal KMS states are the Gibbs states in an irreducible representation. Completely rational nets, the U(1)-current net, the Virasoro nets and their finite tensor products are shown to be of type I. In the completely rational case, we also give a direct proof that all factorial KMS states are Gibbs states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchholz, D., Doplicher, S.: Exotic infrared representations of interacting systems. Ann. Inst. H. Poincaré Phys. Théor. 40(2), 175–184 (1984). https://eudml.org/doc/76232

  2. Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures. I. General properties. J. Funct. Anal. 88(2), 233–250 (1990). doi:10.1016/0022-1236(90)90104-S

    Article  MathSciNet  MATH  Google Scholar 

  3. Buchholz D., D’Antoni C., Longo R.: Nuclearity and thermal states in conformal field theory. Commun. Math. Phys. 270(1), 267–293 (2007) arXiv:math-ph/0603083

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Buchholz, D., Mack, G., Todorov, I.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B Proc. Suppl. 5B, 20–56 (1988). https://www.researchgate.net/publication/222585851

  5. Bañados M., Teitelboim C., Zanelli J.: Black hole in three-dimensional spacetime. Phys. Rev. Lett. 69, 1849–1851 (1992) arXiv:hep-th/9204099

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bratteli O., Robinson Derek W.: Operator Algebras and Quantum Statistical Mechanics. 2. Equilibrium States. Models in Quantum Statistical Mechanics. Texts and Monographs in Physics. Springer, Berlin (1997)

    MATH  Google Scholar 

  7. Buchholz, D., Schulz-Mirbach, H.: Haag duality in conformal quantum field theory. Rev. Math. Phys. 2(1), 105–125 (1990). https://www.researchgate.net/publication/246352668

  8. Carpi S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244(2), 261–284 (2004) arXiv:math/0306425

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Carpi S., Conti R., Hillier R., Weiner M.: Representations of conformal nets, universal \({{\rm C}^*}\) -algebras and K-theory. Commun. Math. Phys. 320(1), 275–300 (2013) arXiv:1202.2543

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Camassa P., Longo R., Tanimoto Y., Weiner M.: Thermal states in conformal QFT. I. Commun. Math. Phys. 309(3), 703–735 (2012) arXiv:1101.2865

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Camassa P., Longo R., Tanimoto Y., Weiner M.: Thermal states in conformal QFT. II.. Commun. Math. Phys. 315(3), 771–802 (2012) arXiv:1109.2064

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Carpi S., Weiner M.: On the uniqueness of diffeomorphism symmetry in conformal field theory. Commun. Math. Phys. 258(1), 203–221 (2005) arXiv:math/0407190

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Carpi, S., Weiner, M.: Local Energy Bounds and Representations of Conformal Nets (2016). (in preparation)

  14. Doplicher, S., Figliolini, F., Guido, D.: Infrared representations of free Bose fields. Ann. Inst. H. Poincaré Phys. Théor. 41(1), 49–62 (1984). https://eudml.org/doc/76250

  15. D’Antoni C., Fredenhagen K., Köster S.: Implementation of conformal covariance by diffeomorphism symmetry. Lett. Math. Phys. 67(3), 239–247 (2004) arXiv:math-ph/0312017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dixmier, J.: C *-Algebras. North-Holland Publishing Co., Amsterdam (1977). (Translated from the French by Francis Jellett, North-Holland Mathematical Library, Vol. 15)

  17. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75(3), 493–536 (1984). https://eudml.org/doc/143108

  18. Doplicher, S., Spera, M.: Representations obeying the spectrum condition. Commun. Math. Phys. 84(4), 505–513 (1982). http://projecteuclid.org/euclid.cmp/1103921286

  19. Doplicher, S., Spera, M.: Local normality properties of some infrared representations. Commun. Math. Phys. 89(1), 19–25(1983). http://projecteuclid.org/euclid.cmp/1103922588

  20. Fredenhagen, K., Jörß, M.: Conformal Haag–Kastler nets, pointlike localized fields and the existence of operator product expansions. Commun. Math. Phys. 176(3), 541–554 (1996). https://projecteuclid.org/euclid.cmp/1104286114

  21. Fredenhagen, K.: Generalizations of the theory of superselection sectors. In: The Algebraic Theory of Superselection Sectors (Palermo, 1989), pp. 379–387. World Scientific Publishing, River Edge, NJ (1990). https://www.researchgate.net/publication/281349333

  22. Goddard, P., Kent, A., Olive, D.: Unitary representations of the Virasoro and super-Virasoro algebras. Commun. Math. Phys. 103(1), 105–119 (1986). https://projecteuclid.org/euclid.cmp/1104114626

  23. Guido, D., Longo, R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys. 148(3), 521–551 (1992). http://projecteuclid.org/euclid.cmp/1104251044

  24. Guido, D., Longo, R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181(1), 11–35 (1996). http://projecteuclid.org/euclid.cmp/1104287623

  25. Garbarz A., Leston M.: Classification of boundary gravitons in ads3 gravity. J. High Energy Phys. 2014(5), 1–26 (2014). doi:10.1007/JHEP05(2014)141

    Article  Google Scholar 

  26. Goodman, R., Wallach, N.R.: Projective unitary positive-energy representations of \({{\rm Diff}(S^1)}\) . J. Funct. Anal. 63(3), 299–321 (1985). http://www.sciencedirect.com/science/article/pii/0022123685900904

  27. Haag R.: Local Quantum Physics. Texts and Monographs in Physics. Springer, Berlin (1996)

    Book  Google Scholar 

  28. Hillier R.: Super-KMS functionals for graded-local conformal nets. Ann. Henri Poincaré. 16(8), 1899–1936 (2015) arXiv:1204.5078

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Iovieno, S.: Stati KMS nella teoria dei campi conformi. Tesi di Laurea Magistrale. Sapienza Università di Roma (2015)

  30. Jech, T.: Set Theory. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1978) (Pure and Applied Mathematics)

  31. Kawahigashi Y., Longo R.: Classification of local conformal nets. Case c < 1. Ann. Math. (2) 160(2), 493–522 (2004) arXiv:math-ph/0201015

    Article  MathSciNet  MATH  Google Scholar 

  32. Kawahigashi Y., Longo R., Müger M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219((3), 631–669 (2001) arXiv:math/9903104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kac V.G., Raina A.K.: Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, Volume 2 of Advanced Series in Mathematical Physics. World Scientific Publishing Co. Inc., Teaneck, NJ (1987)

    MATH  Google Scholar 

  34. Longo, R.: Real Hilbert subspaces, modular theory, \({{\rm SL}(2,R)}\) and CFT. In: Von Neumann Algebras in Sibiu: Conference Proceedings, pp. 33–91. Theta, Bucharest (2008). http://www.mat.uniroma2.it/longo/Lecture_Notes_files/LN-Part1.pdf

  35. Longo R., Xu F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251(2), 321–364 (2004) arXiv:math/0309366

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Morinelli, V., Tanimoto, Y., Weiner. M.: Conformal Covariance and the Split Property. Commun. Math. Phys (2016) (to appear). arXiv:1609.02196

  37. Maloney, A., Witten, E.: Quantum gravity partition functions in three dimensions. J. High Energy Phys. (2) 029, 58 (2010). arXiv:0712.0155

  38. Neeb, K.-H., Salmasian, H.: Classification of positive energy representations of the Virasoro group. Int. Math. Res. Not. IMRN, (18), 8620–8656 (2015). arXiv:1402.6572

  39. Schroer, B.: Some Useful Properties of Rotational Gibbs States in Chiral Conformal QFT (1994). arXiv:hep-th/9405105

  40. Suppes, P.: Axiomatic Set Theory. The University Series in Undergraduate Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York (1960)

  41. Takesaki, M.: Theory of Operator Algebras. I, Volume 124 of Encyclopaedia of Mathematical Sciences. Springer, Berlin (2002). (Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5)

  42. Takesaki, M.: Theory of Operator Algebras. II, Volume 125 of Encyclopaedia of Mathematical Sciences. Springer, Berlin (2003). (Operator Algebras and Non-commutative Geometry, 6)

  43. Takesaki, M.: Theory of Operator Algebras. III, Volume 127 of Encyclopaedia of Mathematical Sciences. Springer, Berlin (2003). (Operator Algebras and Non-commutative Geometry, 8)

  44. Takesaki, M., Winnink, M.: Local normality in quantum statistical mechanics. Commun. Math. Phys. 30, 129–152 (1973). https://projecteuclid.org/euclid.cmp/1103858808

  45. Weiner M.: Conformal covariance and positivity of energy in charged sectors. Commun. Math. Phys. 265(2), 493–506 (2006) arXiv:math-ph/0507066

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Weiner M.: Local equivalence of representations of \({\mathrm{Diff}^+({S}^1)}\) corresponding to different highest weights. Commun. Math. Phys. 352(2), 759–772 (2017). https://arxiv.org/abs/1606.00344

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Witten, E.: Coadjoint orbits of the Virasoro group. Commun. Math. Phys. 114(1), 1–53 (1988). https://projecteuclid.org/euclid.cmp/1104160487

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Longo.

Additional information

Communicated by D. Buchholz, K. Fredenhagen, Y. Kawahigashi

R. Longo: Supported in part by the ERC Advanced Grant 669240 QUEST “Quantum Algebraic Structures and Models”, PRIN-MIUR, GNAMPA-INdAM and Alexander von Humboldt Foundation.

Y. Tanimoto: Supported by the JSPS fellowship for research abroad.

2017 by the authors. This article may be reproduced in its entirety for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longo, R., Tanimoto, Y. Rotational KMS States and Type I Conformal Nets. Commun. Math. Phys. 357, 249–266 (2018). https://doi.org/10.1007/s00220-017-2969-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2969-8

Navigation