Skip to main content
Log in

Local Equivalence of Representations of \({{\rm Diff}^+(S^1)}\) Corresponding to Different Highest Weights

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let c, h and \({c,\tilde{h}}\) be two admissible pairs of central charge and highest weight for \({{\rm Diff}^+(S^1)}\). It is shown here that the positive energy irreducible projective unitary representations \({U_{c,h}}\) and \({U_{c,\tilde{h}}}\) of the group \({{\rm Diff}^+(S^1)}\) are locally equivalent. This means that for any \({I\Subset S^1}\) open proper interval, there exists a unitary operator W I such that \({W_I U_{c,h}(\gamma)W_I^* = U_{c,\tilde{h}}(\gamma)}\) for all \({\gamma \in {\rm Diff}^+(S^1)}\) which act identically on \({I^c\equiv S^1{\setminus} I}\) (i.e., which can “displace” or “move” points only in I). This result extends and completes earlier ones that dealt with only certain regions of the “c, h-plane”, and closes the gap in the full classification of superselection sectors of Virasoro nets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buccholz D., D’Antoni C., Longo R.: Nuclearity and thermal states in conformal field theory. Commun. Math. Phys. 270, 267–293 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Buchholz D., Schulz-Mirbach H.: Haag duality in conformal quantum field theory. Rev. Math. Phys. 2, 105–125 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Camassa P., Longo R., Tanimoto Y., Weiner M.: Thermal states in conformal QFT. II. Commun. Math. Phys. 315, 771–802 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Carpi S.: The Virasoro algebra and sectors with infinite statistical dimension. Ann. Henri Poincaré 4, 601–611 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Carpi S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244, 261–284 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Fewster C.J., Hollands S.: Quantum energy inequalities in two-dimensional conformal field theory. Rev. Math. Phys. 17, 577–612 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Furlan P., Sotkov G.M., Todorov I.T.: Two-dimensional conformal quantum field theory. Riv. Nuovo Cimento 12, 1–202 (1989)

    Article  MathSciNet  Google Scholar 

  8. Gabbiani F., Fröhlich J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155, 569–640 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Goddard P., Kent A., Olive D.: Unitary representations of the Virasoro and super-Virasoro algebra. Commun. Math. Phys. 103, 105–119 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Goodman R., Wallach N.R.: Projective unitary positive-energy representations of \({{\rm Diff}(S^1)}\). J. Funct. Anal. 63, 299–321 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kac V.G., Raina A.K.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  12. Kawahigashi Y., Longo R.: Classification of local conformal nets. Case \({c < 1}\). Ann. Math. 160, 493–522 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Loke T.: Operator Algebras and Conformal Field Theory of the Discrete Series Representation of \({{\rm Diff}^+(S^1)}\). Ph.D. Thesis, University of Cambridge (1994)

  14. Milnor, J.: Remarks on infinite-dimensional Lie groups. In: De Witt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Les Houches, Session XL, 1983, pp. 1007–1057. Elsevier, Amsterdam (1984)

  15. Rehren K. H.: A new view of the Virasoro algebra. Lett. Math. Phys. 30, 125–130 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Strătilă Ş., Zsidó L.: Lectures on von Neumann Algebras. Editura Academiei and Abacus Press, Kent (1979)

    MATH  Google Scholar 

  17. Weiner M.: Conformal covariance and positivity of energy in charged sectors. Commun. Math. Phys. 265, 493–506 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Weiner M.: Restricting positive energy representations of \({{\rm Diff}^+(S^1)}\) to the stabilizer of n points. Commun. Math. Phys. 277, 555–571 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Xu F.: Strong additivity and conformal nets. Pac. J. Math. 221, 167–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihály Weiner.

Additional information

Communicated by Y. Kawahigashi

Supported in part by the ERC advanced Grant 669240 QUEST “Quantum Algebraic Structures and Models” and by OTKA Grant No. 104206.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiner, M. Local Equivalence of Representations of \({{\rm Diff}^+(S^1)}\) Corresponding to Different Highest Weights. Commun. Math. Phys. 352, 759–772 (2017). https://doi.org/10.1007/s00220-016-2824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2824-3

Navigation