Skip to main content
Log in

The Ground State Energy of Heavy Atoms: The Leading Correction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For heavy atoms (large atomic number Z) described by no-pair operators in the Furry picture, we find the ground state’s leading energy correction. We compare the result with (semi-)empirical values and Schwinger’s prediction showing more than qualitative agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach V.: A proof of Scott’s conjecture for ions. Rep. Math. Phys. 28(2), 213–248 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  2. Balinsky A.A., Evans W.D.: Spectral Analysis of Relativistic Operators, 1st edn. Imperial College Press, UK (2011)

    Google Scholar 

  3. Balmer J.J.: Notiz über die Spectrallinien des Wasserstoffs. Annalen der Physik. 261(5), 80–87 (1885)

    Article  ADS  Google Scholar 

  4. Balodis P.: A proof of Scott’s correction for matter. Commun. Math. Phys. 249(1), 79–132 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  5. Myron B.: Corrections to the Thomas–Fermi model of the atom. Ann Phys 144, 1–14 (1982)

    Article  Google Scholar 

  6. Bethe, H.: Quantenmechanik der Ein- und Zwei-Elektronenatome, 2nd edn. In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, XXIV.1, Buch 2, chapter~3, pp. 273–560. Springer, Berlin (1933)

  7. Brown G.E., Ravenhall D.G.: On the interaction of two electrons. Proc. R. Soc. Lond. Ser. A. 208, 552–559 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  8. Burke V.M., Grant I.P.: The effect of relativity on atomic wave functions. Proc. Phys. Soc. 90(2), 297 (1967)

    Article  ADS  Google Scholar 

  9. Cassanas R., Siedentop H.: The ground-state energy of heavy atoms according to Brown and Ravenhall: Absence of relativistic effects in leading order. J. Phys. A. 39(33), 10405–10414 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  10. Darwin C.G.: The wave equation of the electron. Proc. R. Soc. (London) A 118, 654–680 (1928)

    Article  ADS  Google Scholar 

  11. Desclaux J.P.: Relativistic Dirac–Fock expectation values for atoms with Z =  1 to Z =  120. Atomic Data Nuclear Data Tables 12(4), 311–406 (1973)

    Article  ADS  Google Scholar 

  12. Dirac P.A.M.: Note on exchange phenomena in the Thomas–Fermi atom. Proc. Camb. Philos. Soc. 26, 376–385 (1931)

    Article  ADS  Google Scholar 

  13. Englert B.-G., Schwinger J.: Statistical atom: handling the strongly bound electrons. Phys. Rev. A. 29(5), 2331–2338 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  14. Englert B.-G., Schwinger J.: Statistical atom: some quantum improvements. Phys. Rev. A. 29(5), 2339–2352 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  15. Englert B.-G., Schwinger J.: Atomic-binding-energy oscillations. Phys. Rev. A. 32, 47–63 (1985)

    Article  ADS  Google Scholar 

  16. Erdős L., Fournais S., Solovej J.P.: Relativistic Scott correction in self-generated magnetic fields. J. Math. Phys. 53(9), 095202–095226 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  17. Erdős L., Fournais S., Solovej J.P.: Scott correction for large atoms and molecules in a self-generated magnetic field. Commun. Math. Phys. 312(3), 847–882 (2012)

    Article  ADS  Google Scholar 

  18. Erdős L., Fournais S., Solovej J.P.: Second order semiclassics with self-generated magnetic fields. Ann. Henri Poincaré. 13(4), 671–730 (2012)

    Article  ADS  Google Scholar 

  19. Erdős L., Solovej J.P.: Ground state energy of large atoms in a self-generated magnetic field. Commun. Math. Phys. 294(1), 229–249 (2010)

    Article  ADS  Google Scholar 

  20. Evans W.D., Perry P., Siedentop H.: The spectrum of relativistic one-electron atoms according to Bethe and Salpeter. Commun. Math. Phys. 178(3), 733–746 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  21. Fefferman C., Seco L.: Eigenfunctions and eigenvalues of ordinary differential operators. Adv. Math. 95(2), 145–305 (1992)

    Article  MathSciNet  Google Scholar 

  22. Fefferman C., Seco L.: The density of a one-dimensional potential. Adv. Math. 107(2), 187–364 (1994)

    Article  MathSciNet  Google Scholar 

  23. Fefferman C., Seco L.: The eigenvalue sum of a one-dimensional potential. Adv. Math. 108(2), 263–335 (1994)

    Article  MathSciNet  Google Scholar 

  24. Fefferman C., Seco L.: On the Dirac and Schwinger corrections to the ground-state energy of an atom. Adv. Math. 107(1), 1–188 (1994)

    Article  MathSciNet  Google Scholar 

  25. Fefferman C., Seco L.: The density in a three-dimensional radial potential. Adv. Math. 111(1), 88–161 (1995)

    Article  MathSciNet  Google Scholar 

  26. Fefferman C.L., Seco L.A.: An upper bound for the number of electrons in a large ion. Proc. Nat. Acad. Sci. USA 86, 3464–3465 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  27. Fefferman C.L., Seco L.A.: On the energy of a large atom. Bull. AMS 23(2), 525–530 (1990)

    Article  MathSciNet  Google Scholar 

  28. Fefferman Charles L., Seco Luis A.: Aperiodicity of the Hamiltonian flow in the Thomas–Fermi potential. Revista Mathemática Iberoamericana. 9(3), 409–551 (1993)

    Article  Google Scholar 

  29. Fermi E.: Un metodo statistico per la determinazione di alcune proprietá dell’atomo. Atti della Reale Accademia Nazionale dei Lincei, Rendiconti, Classe di Scienze Fisiche, Matematiche e Naturali. 6(12), 602–607 (1927)

    Google Scholar 

  30. Fermi E.: Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z. Phys. 48, 73–79 (1928)

    Article  ADS  Google Scholar 

  31. Foldy L.L.: A note on atomic binding energies. Phys. Rev. 83, 397–399 (1951)

    Article  ADS  Google Scholar 

  32. Foldy L.L., Wouthuysen S.A.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. II. Ser. 78, 29–36 (1950)

    ADS  Google Scholar 

  33. Frank R.L., Lieb E.H., Seiringer R.: Stability of relativistic matter with magnetic fields for nuclear charges up to the critical value. Commun. Math. Phys. 275(2), 479–489 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  34. Frank R.L., Siedentop H., Warzel S.: The ground state energy of heavy atoms: Relativistic lowering of the leading energy correction. Commun. Math. Phys. 278(2), 549–566 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  35. Frank R.L., Siedentop H., Warzel S.: The energy of heavy atoms according to Brown and Ravenhall: the Scott correction. Doc. Math. 14, 463–516 (2009)

    MathSciNet  Google Scholar 

  36. Furry W.H., Oppenheimer J.R.: On the theory of the electron and positive. Phys. Rev. II. Ser. 45, 245–262 (1934)

    ADS  Google Scholar 

  37. Gordon W.: Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie. Z. Phys. 48, 11–14 (1928)

    Article  ADS  Google Scholar 

  38. Greiner W.: Relativistic quantum mechanics, volume 3 of theoretical physics—text and exercise books, 1st edn. Springer, Berlin (1990)

    Google Scholar 

  39. Griesemer M., Lewis R.T., Siedentop H.: A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potential. Doc. Math. 4, 275–283 (1999)

    MathSciNet  Google Scholar 

  40. Hess B.A.: Relativistic electronic structure calculations employing a two-component no-pair formalism with external field projection operators. Phys. Rev. A. 33, 3742–3748 (1986)

    Article  ADS  Google Scholar 

  41. Hughes, W.: An atomic energy lower bound that gives Scott’s correction. PhD thesis, Princeton, Department of Mathematics (1986)

  42. Hughes W.: An atomic lower bound that agrees with Scott’s correction. Adv. Math. 79, 213–270 (1990)

    Article  MathSciNet  Google Scholar 

  43. Ivrii V.J., Sigal I.M.: Asymptotics of the ground state energies of large Coulomb systems. Ann. Math. 138(2), 243–335 (1993)

    Article  MathSciNet  Google Scholar 

  44. Kramida, A., Ralchenko, Y., Reader, J., NIST ASD Team.: NIST atomic spectra database (ver. 5.2) (Online). National Institute of Standards and Technology, Gaithersburg (2014). http://physics.nist.gov/asd

  45. Lebowitz J.L., Waisman Eduardo M.: Statistical mechanics of simple fluids: beyond van der Waals. Phys. Today 33(3), 24–30 (1980)

    Article  Google Scholar 

  46. Lenz W.: Über die Anwendbarkeit der statistischen Methode auf Ionengitter. Z. Phys. 77, 713–721 (1932)

    Article  ADS  Google Scholar 

  47. Lieb E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  48. Lieb E.H., Simon B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23(1), 22–116 (1977)

    Article  MathSciNet  Google Scholar 

  49. Lieb E.H., Yau H.-T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118, 177–213 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  50. Mancas P., Klaus Müller A.M., Siedentop H.: The optimal size of the exchange hole and reduction to one-particle Hamiltonians. Theor. Chem. Acc. Theory Comput. Model. (Theoretica Chimica Acta) 111(1), 49–53 (2004)

    Google Scholar 

  51. Matte O., Stockmeyer E.: Spectral theory of no-pair Hamiltonians. Rev. Math. Phys. 22(01), 1–53 (2010)

    Article  MathSciNet  Google Scholar 

  52. Messiah, A.: Mécanique quantique, vol. 1, 2nd edn. Dunod, Paris

  53. Milne E.A.: The total energy of binding of a heavy atom. Math. Proc. Camb. Philos. Soc. 23(07), 794–799 (1927)

    Article  ADS  Google Scholar 

  54. Mittleman Marvin H.: Theory of relativistic effects on atoms: Configuration-space Hamiltonian. Phys. Rev. A. 24(3), 1167–1175 (1981)

    Article  ADS  Google Scholar 

  55. Nenciu G.: Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Commun. Math. Phys. 48(3), 235–247 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  56. Sørensen, T.Ø.: Towards a relativistic Scott correction. PhD thesis, Aarhus Universitet, http://www.imf.au.dk/cgi-bin/viewers/viewpublications.cgi?id=79 (1998)

  57. Sørensen T.Ø.: The large-Z behavior of pseudorelativistic atoms. J. Math. Phys. 46(5), 052307,24 (2005)

    Article  Google Scholar 

  58. Reiher, M., Wolf, A.: Relativistic quantum chemistry: the fundamental theory of molecular science. Wiley, Weinheim (2009)

  59. Saue, T., Visscher, L.: Four-component electronic structure methods for molecules. In: Kaldor, U., Wilson, S. (eds.) Theoretical Chemistry and Physics of Heavy and Superheavy Elements, volume 11 of Progress in Theoretical Chemistry and Physics, pp. 211–267. Springer, The Netherlands (2003)

  60. Saue T.: Relativistic Hamiltonians for chemistry: a primer. ChemPhysChem 12(17), 3077–3094 (2011)

    Article  Google Scholar 

  61. Schrödinger E.: Quantisierung als Eigenwertproblem (Erste Mitteilung). Annalen der Physik 384(4), 361–376 (1926)

    Article  ADS  Google Scholar 

  62. Schwinger J.: Thomas–Fermi model: the leading correction. Phys. Rev. A 22(5), 1827–1832 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  63. Schwinger J.: Thomas–Fermi model: the second correction. Phys. Rev. A 24(5), 2353–2361 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  64. Scott J.M.C.: The binding energy of the Thomas–Fermi atom. Phil. Mag. 43, 859–867 (1952)

    Article  Google Scholar 

  65. Shabaev V.M.: Generalizations of the virial relations for the Dirac equation in a central field and their applications to the Coulomb field. J. Phys. B Atomic Mol. Opt. Phys. 24(21), 4479 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  66. Siedentop H., Weikard R.: On the leading energy correction for the statistical model of the atom: interacting case. Commun. Math. Phys. 112, 471–490 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  67. Siedentop H., Weikard R.: Upper bound on the ground state energy of atoms that proves Scott’s conjecture. Phys. Lett. A. 120, 341–342 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  68. Siedentop H., Weikard R.: On the leading correction of the Thomas–Fermi model: lower bound—with an appendix by A. M. K. Müller. Invent. Math. 97, 159–193 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  69. Siedentop H., Weikard R.: Asymptotically correct lower bound for the sum of negative eigenvalues of Schrödinger operators through a decomposition of unity given by Macke. Asymptot. Anal. 8, 65–72 (1994)

    MathSciNet  Google Scholar 

  70. Siedentop Heinz K.H., Weikard R.: On the leading energy correction for the statistical model of the atom: non-interacting case. Abh. Braunschweig. Wiss. Ges. 38, 145–158 (1986)

    Google Scholar 

  71. Solovej Jan P., Østergaard Sørensen T., Spitzer Wolfgang L.: The relativistic Scott correction for atoms and molecules. Commun. Pure Appl. Math. 63, 39–118 (2010)

    Article  Google Scholar 

  72. Sommerfeld A.: Zur Quantentheorie der Spektrallinien. Annalen der Physik. 356(17), 1–94 (1916)

    Article  ADS  Google Scholar 

  73. Sommerfeld A.: Asymptotische Integration der Differentialgleichung des Thomas–Fermischen Atoms. Z. Phys. A. 78, 283–308 (1932)

    Article  Google Scholar 

  74. Stell, G. (1977) Fluids with long-range forces: toward a simple analytic theory. In: Berne, B.J. (ed.) Statistical Mechanics, volume 5 of Modern Theoretical Chemistry, pp. 47–84. Springer, USA

  75. Sucher J.: Foundations of the relativistic theory of many-electron atoms. Phys. Rev. A. 22(2), 348–362 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  76. Sucher J.: Foundations of the relativistic theory of many-electron bound states. Int. J. Quantum Chem. 25, 3–21 (1984)

    Article  Google Scholar 

  77. Sucher J.: Relativistic many-electron Hamiltonians. Phys. Scripta. 36, 271–281 (1987)

    Article  ADS  Google Scholar 

  78. Thaller, B.: The Dirac Equation. Texts and Monographs in Physics, 1 edn. Springer, Berlin (1992)

  79. Thomas L.H.: The calculation of atomic fields. Proc. Camb. Phil. Soc. 23, 542–548 (1927)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Siedentop.

Additional information

Communicated by R. Seiringer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handrek, M., Siedentop, H. The Ground State Energy of Heavy Atoms: The Leading Correction. Commun. Math. Phys. 339, 589–617 (2015). https://doi.org/10.1007/s00220-015-2413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2413-x

Keywords

Navigation