Skip to main content

Advertisement

Log in

Asymptotic normalization coefficients in nuclear reactions and nuclear astrophysics

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The asymptotic normalization coefficient (ANC) is a fundamental nuclear characteristic of bound states and resonances. The ANC plays an important role in low-energy elastic scattering, transfer and radiative capture reactions, and provides a powerful indirect method in nuclear astrophysics. In this comprehensive review the main properties of the ANC and the role of the ANC in nuclear reactions and nuclear astrophysics are discussed. Also different experimental and theoretical methods of determining the ANCs are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The relevant data are available from the authors upon reasonable request.]

Notes

  1. It is worth mentioning that the standard notation of the Coulomb penetration is \(C_{l}\). However, to distinguish this factor from the ANC we introduced \({{\mathcal {C}}}_{l}\).

References

  1. L.D. Blokhintsev, I. Borbely, E.I. Dolinskii, Fiz. Elem. Chastits t. Yadra 8, 1189 (1977) [Sov. J. Part. Nucl. 8, 485 (1977)]

  2. L.D. Blokhintsev, A.M. Mukhamedzhanov, A.N. Safronov, Fiz. Elem. Chastits t. Yadra 15, 1296 (1984) [Sov. J. Part. Nucl. 15, 580 (1984)]

  3. E.I. Dolinskii, A.M. Mukhamedzhanov, Izv. Akad. Nauk SSSR Ser. Fiz. 41, 2055 (1977) [Bull. Acad. Sci. USSR, Phys. Ser. 41, 55 (1977)]

  4. A.M. Mukhamedzhanov, R.E. Tribble, Phys. Rev. C 59, 3418 (1999)

    Article  ADS  Google Scholar 

  5. A.M. Mukhamedzhanov, M. La Cognata, V. Kroha, Phys. Rev. C 83, 044604 (2011)

    Article  ADS  Google Scholar 

  6. H.A. Kramers, Hand und Jahrbuch der Chemischer Physik 1, 312 (1938)

    Google Scholar 

  7. W. Heisenberg, Zs f. Naturforsch. 1, 608 (1946)

    Article  ADS  Google Scholar 

  8. C. Möller, Dan. Vid Selsk. Mat. Fys. Medd. 22, 19 (1946)

  9. N. Hu, Phys. Rev. 74, 131 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ya.B. Zel’dovich, ZhetF 51, 1492 (1965)

    Google Scholar 

  11. M. Perelomov, V.S. Popov, M.V. Terentev, ZhETF 51, 309 (1966)

    Google Scholar 

  12. A.M. Mukhamedzhanov, N.K. Timofeyuk, Pis’ma Eksp. Teor. Fiz. 51, 247 (1990) [JETP Lett. 51, 282 (1990)]

  13. A.M. Mukhamedzhanov, N.K. Timofeyuk, Sov. J. Nucl. Phys. 51, 431 (1990) [Yad. Fiz. 51, 679 (1990)]

  14. H.M. Xu et al., Phys. Rev. Lett. 73, 2027 (1994)

    Article  ADS  Google Scholar 

  15. A.M. Mukhamedzhanov et al., Phys. Rev. C 56, 1302 (1997)

    Article  ADS  Google Scholar 

  16. C.A. Gagliardi et al., Phys. Rev. C 59, 1149 (1999)

    Article  ADS  Google Scholar 

  17. A.M. Mukhamedzhanov, C.A. Gagliardi, R.E. Tribble, Phys. Rev. C 63, 024612 (2001)

    Article  ADS  Google Scholar 

  18. N.K. Timofeyuk, R.C. Johnson, A.M. Mukhamedzhanov, Phys. Rev. Lett. 91, 232501 (2003)

    Article  ADS  Google Scholar 

  19. A.M. Mukhamedzhanov, F.M. Nunes, Phys. Rev. C 72, 017602 (2005)

    Article  ADS  Google Scholar 

  20. G. Tabacaru et al., Phys. Rev. C 73, 025808 (2006)

    Article  ADS  Google Scholar 

  21. A.M. Mukhamedzhanov et al., Phys. Rev. C 73, 035806 (2006)

    Article  ADS  Google Scholar 

  22. X. Tang et al., Phys. Rev. C 67, 015804 (2003)

    Article  ADS  Google Scholar 

  23. A.M. Mukhamedzhanov et al., Phys. Rev. C 77, 051601(R) (2008)

    Article  ADS  Google Scholar 

  24. A.M. Mukhamedzhanov et al., Phys. Rev. C 78, 015804 (2008)

    Article  ADS  Google Scholar 

  25. A.M. Mukhamedzhanov et al., Phys. Rev. C 81, 054314 (2010)

    Article  ADS  Google Scholar 

  26. A.M. Mukhamedzhanov, L.D. Blokhintsev, B.F. Irgaziev, Phys. Rev. C 83, 055805 (2011)

    Article  ADS  Google Scholar 

  27. R.C. Johnson, P.J.R. Soper, Phys. Rev. C 1, 055807 (1970)

    Article  Google Scholar 

  28. G.H. Rawitscher, Phys. Rev. C 9, 2010 (1974)

    Article  ADS  Google Scholar 

  29. M. Kamimura et al., Prog. Theor. Phys. Suppl. 89, 1 (1986)

    Article  ADS  Google Scholar 

  30. N. Austern et al., Phys. Rep. 154, 125 (1987)

    Article  ADS  Google Scholar 

  31. A.M. Mukhamedzhanov, Phys. Rev. C 84, 044616 (2011)

    Article  ADS  Google Scholar 

  32. A.M. Mukhamedzhanov et al., Phys. Rev. C 84, 024616 (2011)

    Article  ADS  Google Scholar 

  33. D.Y. Pang, F.M. Nunes, A.M. Mukhamedzhanov, Phys. Rev. C 75, 024601 (2007)

    Article  ADS  Google Scholar 

  34. D.Y. Pang, A.M. Mukhamedzhanov, Phys. Rev. C 90, 044611 (2014)

    Article  ADS  Google Scholar 

  35. A.M. Mukhamedzhanov, Phys. Rev. C 86, 044615 (2012)

    Article  ADS  Google Scholar 

  36. W.W. Daehnick, J.D. Childs, Z. Vrcelj, Phys. Rev. C 21, 2253 (1980)

    Article  ADS  Google Scholar 

  37. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  38. R.C. Johnson, P.C. Tandy, Nucl. Phys. A 235, 56 (1974)

    Article  ADS  Google Scholar 

  39. M. McCleskey et al., Phys. Rev. C 89, 044605 (2014)

    Article  ADS  Google Scholar 

  40. J.A. Aymar et al., Nucl. Phys. A 207, 596 (1973)

    Article  ADS  Google Scholar 

  41. K. Hatanaka et al., Nucl. Phys. A 419, 530 (1984)

    Article  ADS  Google Scholar 

  42. O. Iwamoto et al., Nucl. Phys. A 576, 387 (1994)

    Article  ADS  Google Scholar 

  43. K. Alder et al., Rev. Mod. Phys. 28, 432 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  44. L.D. Knutson, Ann. Phys. 106, 1 (1977)

    Article  ADS  Google Scholar 

  45. A.M. Mukhamedzhanov, Phys. Rev. C 98, 044626 (2018)

    Article  ADS  Google Scholar 

  46. I. Iben, A. Renzini, Annu. Rev. Astron. Astrophys. 21, 271 (1983)

    Article  ADS  Google Scholar 

  47. M. Heil et al., Phys. Rev. C 78, 025803 (2008)

    Article  ADS  Google Scholar 

  48. R.I. de Boer et al., Phys. Rev. C 101, 045802 (2020)

    Article  ADS  Google Scholar 

  49. T. Faestermann et al., Phys. Rev. C 92, 052802(R) (2015)

    Article  ADS  Google Scholar 

  50. E.D. Johnson et al., Phys. Rev. Lett. 97, 192701 (2006)

    Article  ADS  Google Scholar 

  51. M.L. Avilla et al., Phys. Rev. C 91, 048801 (2015)

    Article  ADS  Google Scholar 

  52. O. Tippella, M. LaCognata, Astrophys. J. 837, 41 (2017)

    Article  ADS  Google Scholar 

  53. A.M. Mukhamedzhanov, Shubhchintak, C.A. Bertulani, Phys. Rev. C 93, 045805 (2016)

    Article  ADS  Google Scholar 

  54. LUNA Collaboration, G.F. Ciani et al., Phys. Rev. Lett. 127, 152701 (2021)

  55. H.A. Bethe, C.L. Critchfield, Phys. Rev. 54, 248–862 (1938)

    Article  ADS  Google Scholar 

  56. H.A. Bethe, Phys. Rev. 55, 103–434 (1939)

    Article  ADS  Google Scholar 

  57. K.M. Nollett, S.C. Pieper, R.B. Wiringa, J. Carlson, G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007)

    Article  ADS  Google Scholar 

  58. K.M. Nollett, R.B. Wiringa, Phys. Rev. C 83, 041001 (2011)

    Article  ADS  Google Scholar 

  59. F.C. Barker, T. Kajino, Aust. J. Phys. 44, 369 (1991)

    Article  ADS  Google Scholar 

  60. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  61. A.M. Mukhamedzhanov, Phys. Rev. C 99, 024311 (2019)

    Article  ADS  Google Scholar 

  62. L.G. Sobotka, Phys. Rev. C 87, 054329 (2013)

    Article  ADS  Google Scholar 

  63. F. Ajzenberg-Selove, Nucl. Phys. A 449, 1 (1986)

    Article  ADS  Google Scholar 

  64. C. Rolfs, Nucl. Phys. A 217, 29 (1973)

    Article  ADS  Google Scholar 

  65. D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564, 1 (1993)

    Article  ADS  Google Scholar 

  66. T. Minemura et al., RIKEN Accel. Prog. Rep. A 35, 58 (2002)

    Google Scholar 

  67. B.B. Skorodumov et al., Phys. Rev. C 75, 024607(R) (2007)

    Article  ADS  Google Scholar 

  68. M. Wiescher et al., Astrophys. J. 343, 352 (1989)

    Article  ADS  Google Scholar 

  69. A. Banu et al., Phys. Rev. C 79, 025805 (2009)

    Article  ADS  Google Scholar 

  70. C. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, Chicago, 1988)

    Google Scholar 

  71. P.F. Bertone et al., Phys. Rev. Lett. 87, 152501 (2001)

    Article  ADS  Google Scholar 

  72. A.M. Mukhamedzhanov et al., Phys. Rev. C 67, 065804 (2003)

    Article  ADS  Google Scholar 

  73. E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  74. Y. Yamada et al., Phys. Lett. B 579, 265 (2004)

    Article  ADS  Google Scholar 

  75. D. Schürmann et al., Phys. Rev. C 77, 055803 (2008)

    Article  ADS  Google Scholar 

  76. L. Trache et al., Phys. Rev. C 58, 2715 (1998)

    Article  ADS  Google Scholar 

  77. P. Bém et al., Phys. Rev. C 62, 024320 (2000)

    Article  ADS  Google Scholar 

  78. R.E. Warner et al., Phys. Rev. C 74, 014605 (2006)

    Article  ADS  Google Scholar 

  79. W.T. Pinkston, G.R. Satchler, Nucl. Phys. 72, 641 (1965)

    Article  Google Scholar 

  80. R.J. Philpott, W.T. Pinkston, G.R. Satchler, Nucl. Phys. A 119, 241 (1968)

    Article  ADS  Google Scholar 

  81. N.K. Timofeyuk, Nucl. Phys. A 632, 19 (1998)

    Article  ADS  Google Scholar 

  82. A.M. Mukhamedzhanov, A.S. Kadyrov, D.Y. Pang, Eur. Phys. J. A 56, 233 (2020)

    Article  ADS  Google Scholar 

  83. L.D. Blokhintsev et al., Phys. Rev. C 48, 2390 (1993)

    Article  ADS  Google Scholar 

  84. J.-M. Sparenberg, P. Capel, D. Baye, Phys. Rev. C 81, 011601 (2010)

    Article  ADS  Google Scholar 

  85. B.F. Irgaziev, Yu.V. Orlov, Phys. Rev. C 91, 024002 (2015)

    Article  ADS  Google Scholar 

  86. O.L. Ramírez Suárez, J.-M. Sparenberg, Phys. Rev. C 96, 034601 (2017)

    Article  ADS  Google Scholar 

  87. L.D. Blokhintsev et al., Phys. Rev. C 95, 044618 (2017)

    Article  ADS  Google Scholar 

  88. L.D. Blokhintsev et al., Phys. Rev. C 97, 024602 (2018)

    Article  ADS  Google Scholar 

  89. L.D. Blokhintsev et al., Phys. Rev. C 98, 064610 (2018)

  90. L.D. Blokhintsev et al., Phys. Rev. C 100, 024627 (2019)

    Article  ADS  Google Scholar 

  91. Yu.V. Orlov, B.F. Irgaziev, J.-U. Nabi, Phys. Rev. C 96, 025809 (2017)

    Article  ADS  Google Scholar 

  92. R.E. Tribble et al., Rep. Prog. Phys. 77, 106901 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  93. A.M. Mukhamedzhanov, A.S. Kadyrov, Phys. Rev. C 82, 051601(R) (2010)

    Article  ADS  Google Scholar 

  94. N.K. Timofeyuk, P. Descouvemont, Phys. Rev. C 72, 064324 (2005)

    Article  ADS  Google Scholar 

  95. N.K. Timofeyuk et al., Phys. Rev. Lett. 96, 162501 (2006)

    Article  ADS  Google Scholar 

  96. J. Okolowicz et al., Phys. Rev. C 85, 064320 (2012)

    Article  ADS  Google Scholar 

  97. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1987)

    Article  ADS  Google Scholar 

  98. S. Weinberg, Phenomenological Lagrangians. Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  99. A.I. Baz, Ya.B. Zeldovich, A.M. Perelomov, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics, 2nd edn. (Nauka, Moscow, 1971) [English translation of 1st edn. (Jerusalem, 1969)]

  100. R.G. Newton, Scattering Theory of Waves and Particles, 2nd edn. (Springer, Heidelberg, 1982)

    Book  MATH  Google Scholar 

  101. Yu.L. Mentkovsky, Nucl. Phys. 65, 673 (1965)

    Article  MathSciNet  Google Scholar 

  102. J. Hamilton, I. Øverbö, B. Tromborg, Nucl. Phys. B 60, 443 (1973)

    Article  ADS  Google Scholar 

  103. L.D. Landau, E.M. Lifshits, Quantum Mechanics. Nonrelativistic Theory (in Russian), vol III. (“Nauka”, Moscow, 1989)

  104. S. König, Effective quantum theories with short- and long-range forces. Dissertation, Bonn (2013)

  105. H. Cornille, A. Martin, Nuovo Cim. 26, 298 (1962)

    Article  ADS  Google Scholar 

  106. R. Yarmukhamedov, D. Baye, Phys. Rev. C 84, 024603 (2011)

    Article  ADS  Google Scholar 

  107. H.W. Hammer, S. König (2014). arXiv:1406.1359 [nucl-th]

  108. E. Ryberg, C. Forssen, H.-W. Hammer, L. Platter, Phys. Rev. C 89, 014325 (2014). arXiv:1507.08675 [nucl-th]

  109. E. Ryberg, Cluster effective field theory. Ph.D. Department of Physics, Chalmers University of Technology, Göteborg, Sweden (2016)

  110. M. Gell-Mann, F. Low, Phys. Rev. 84, 350 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  111. L. Bertocchi, S. Fubini, G. Furlan, Nuovo Cim. XXXII, 745 (1964)

    Article  ADS  Google Scholar 

  112. C.R. Brune, Phys. Rev. C 102, 034328 (2020)

    Article  ADS  Google Scholar 

  113. A. Csoto, Phys. Rev. C 61, 037601 (2000)

    Article  ADS  Google Scholar 

  114. L.D. Blokhintsev, D.A. Savin, Phys. At. Nucl. 79, 358 (2016)

    Article  Google Scholar 

  115. A.S. Kadyrov et al., Ann. Phys. 324, 1516 (2009)

    Article  ADS  Google Scholar 

  116. R.F. Casten, Nuclear Structure from a Simple Perspective, 2nd edn. (Oxford University Press, New York, 2000)

    Google Scholar 

  117. P. Navrátil, J.P. Vary, B.R. Barrett, Phys. Rev. Lett. 84, 5728 (2000) [Phys. Rev. C 62, 054311 (2000)]

  118. S. Quaglioni, P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008)

    Article  ADS  Google Scholar 

  119. P. Navrátil, W.E. Ormand, Phys. Rev. C 68, 034305 (2003)

    Article  ADS  Google Scholar 

  120. C.S. Pieper, R.B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51, 53 (2001)

    Article  ADS  Google Scholar 

  121. N.K. Timofeyuk, Phys. Rev. C 84, 054313 (2011)

    Article  ADS  Google Scholar 

  122. S.V. Artemov et al., Yad. Fiz. 59, 454 (1996) [Phys. At. Nucl. (Engl. Transl.) 59, 428 (1996)]

  123. S.V. Artemov et al., Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya 73(2), 176 (2009) [Bulletin of the Russian Academy of Sciences: Physics (Engl. Transl.) 73(2), 165 (2009)]

  124. S. Burzynski et al., Nucl. Phys. A 399, 230 (1983)

    Article  ADS  Google Scholar 

  125. L. Trache et al., Phys. Rev. C 67, 062801(R) (2003)

    Article  ADS  Google Scholar 

  126. N.K. Timofeyuk, J. Phys. G Nucl. Part. Phys. 41, 094008 (2014)

    Article  ADS  Google Scholar 

  127. Yu.F. Smirnov, K.V. Shitikova, Sov. J. Part. Nucl. 8, 344 (1977)

    Google Scholar 

  128. A. Kievsky et al., Phys. Lett. B 406, 292 (1997)

    Article  ADS  Google Scholar 

  129. M. Viviani, A. Kievsky, S. Rosati, Phys. Rev. C 71, 024006 (2005)

    Article  ADS  Google Scholar 

  130. N.K. Timofeyuk, I.J. Thompson, Phys. Rev. C 78, 054322 (2008)

    Article  ADS  Google Scholar 

  131. I. Brida, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 84, 024319 (2011)

    Article  ADS  Google Scholar 

  132. R.B. Wiringa et al., Phys. Rev. C 62, 014001 (2000)

    Article  ADS  Google Scholar 

  133. N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  134. R.B. Wiringa (2011). http://www.phy.anl.gov/theory/research/overlap

  135. P. Navrátil, Phys. Rev. C 70, 054324 (2004)

    Article  ADS  Google Scholar 

  136. P. Navrátil, C.A. Bertulani, E. Caurier, Phys. Rev. C 73, 065801 (2006)

    Article  ADS  Google Scholar 

  137. K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Vieweg, Braunschweig, 1977)

    Book  Google Scholar 

  138. Y.C. Tang, M. LeMere, D.R. Thompson, Phys. Rep. 47, 167 (1978)

    Article  ADS  Google Scholar 

  139. T. Fliessbach, H. Walliser, Nucl. Phys. A 377, 84 (1982)

    Article  ADS  Google Scholar 

  140. R.G. Lovas et al., Phys. Rep. 294, 265 (1998)

    Article  ADS  Google Scholar 

  141. H.M. Hofmann, G.M. Hale, Phys. Rev. C 77, 044002 (2008)

    Article  ADS  Google Scholar 

  142. S. Quaglioni, P. Navrátil, Phys. Rev. C 79, 044606 (2009)

    Article  ADS  Google Scholar 

  143. P. Navrátil, R. Roth, S. Quaglioni, Phys. Rev. C 82, 034609 (2010)

    Article  ADS  Google Scholar 

  144. P. Navrátil, S. Quaglioni, Phys. Rev. C 83, 044609 (2011)

    Article  ADS  Google Scholar 

  145. G. Hupin, S. Quaglioni, P. Navrátil, Phys. Rev. Lett. 114, 212502 (2015)

    Article  ADS  Google Scholar 

  146. A. Kharbakh, P. Descouvemont, Phys. Rev. C 58, 1066 (1998)

    Article  ADS  Google Scholar 

  147. L.D. Blokhintsev et al., Yad Fiz. 69, 456 (2006) [Phys. At. Nucl. 69, 433 (2006)]

  148. L.D. Blokhintsev et al., Uzb. J. Phys. 12, 217 (2010)

    Google Scholar 

  149. A. Gnech, M. Viviani, L.E. Marcucci, Phys. Rev. C 102, 014001 (2020)

    Article  ADS  Google Scholar 

  150. M. Michel et al., J. Phys. G Nucl. Part. Phys. 36, 013101 (2009)

    Article  ADS  Google Scholar 

  151. G. Papadimitriou et al., Phys. Rev. C 88, 044318 (2013)

    Article  ADS  Google Scholar 

  152. N.K. Timofeyuk, Phys. Rev. Lett. 103, 242501 (2009)

    Article  ADS  Google Scholar 

  153. N.K. Timofeyuk, Phys. Rev. C 81, 064306 (2010)

    Article  ADS  Google Scholar 

  154. N.K. Timofeyuk, Phys. Rev. C 88, 044315 (2013)

    Article  ADS  Google Scholar 

  155. G.R. Satchler, Direct Nuclear Reactions (Clarendon Press, Oxford University Press, Oxford, New York, 1983)

    Google Scholar 

  156. N.K. Glendenning, Direct Nuclear Reactions (World Scientific Publishing Co., London, 1983)

    MATH  Google Scholar 

  157. S.K. Bogner, R.J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010). arXiv:0912.3688

  158. R.J. Furnstahl, A. Schwenk, J. Phys. G 37, 064005 (2010)

    Article  ADS  Google Scholar 

  159. H. Feldmeier et al., Nucl. Phys. A 632, 61 (1998)

    Article  ADS  Google Scholar 

  160. K. Suzuki, S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980)

    Article  ADS  Google Scholar 

  161. P. Navrátil et al., J. Phys. G 36, 083101 (2009)

    Article  ADS  Google Scholar 

  162. S. Fujii, R. Okamoto, K. Suzuki, J. Phys. Conf. Ser. 20, 83 (2005) [Phys. Rev. C 69, 034328 (2004)]

  163. S.K. Bogner, R.J. Furnstahl, R.J. Perry, Phys. Rev. C 75, 061001(R) (2007)

    Article  ADS  Google Scholar 

  164. B.K. Jennings (2011). arXiv:1102.372 [nucl-th]

  165. G.J. Kramer, H.P. Blok, L. Lapikas, Nucl. Phys. A 679, 267 (2001)

  166. C. Rolfs, W.S. Rodney, Nucl. Phys. A 235, 450 (1974)

    Article  ADS  Google Scholar 

  167. D.F. Hebbard, Nucl. Phys. 15, 289 (1960)

    Article  Google Scholar 

  168. F.C. Barker, Phys. Rev. C 78, 044611 (2008)

    Article  ADS  Google Scholar 

  169. D. Bemmerer et al., Phys. Rev. Lett. 97, 122502 (2006)

    Article  ADS  Google Scholar 

  170. D. Bemmerer et al., J. Phys. G Nucl. Phys. 36, 045202 (2009)

    Article  ADS  Google Scholar 

  171. P.J. LeBlanc et al., Phys. Rev. C 82, 055804 (2010)

    Article  ADS  Google Scholar 

  172. A.M. Mukhamedzhanov, M. La Cognata, V. Kroha, Phys. Rev. C 83, 044604 (2011)

    Article  ADS  Google Scholar 

  173. M. Spite, F. Spite, Nature 297, 483 (1982)

    Article  ADS  Google Scholar 

  174. F. Spite, M. Spite, A&A 115, 357 (1982)

    ADS  Google Scholar 

  175. G. Hinshaw, D. Larson, E. Komatsu et al., Astrophys. J. Suppl. Ser. 208, 19 (2013)

  176. A. Coc, J.-P. Uzan, E. Vangioni, J. Cosmol. Astropart. Phys. 10, 050 (2014)

    Article  ADS  Google Scholar 

  177. Planck Collaboration, P.A.R. Ade, N. Aghanim et al., A&A 571, A10 (2014)

  178. U. Schröder et al., Nucl. Phys. A 467, 240 (1987)

    Article  ADS  Google Scholar 

  179. L. Sbordone, P. Bonifacio, E. Caffau et al., A&A 522, A26 (2010)

    Article  ADS  Google Scholar 

  180. M. Asplund et al., ApJ 644, 229 (2006)

    Article  ADS  Google Scholar 

  181. J. Kiener et al., Phys. Rev. C 44, 2195 (1991)

    Article  ADS  Google Scholar 

  182. F.E. Cecil, J. Yan, C.S. Galovich, Phys. Rev. C 53, 1967 (1996)

    Article  ADS  Google Scholar 

  183. F. Hammache et al., Phys. Rev. C 82, 065803 (2010)

    Article  ADS  Google Scholar 

  184. M. Anders et al., Phys. Rev. Lett. 113, 042501 (2014)

    Article  ADS  Google Scholar 

  185. A.M. Mukhamedzhanov et al., Phys. Rev. C 52, 3483 (1995)

    Article  ADS  Google Scholar 

  186. A.M. Mukhamedzhanov, Shubhchintak, C.A. Bertulani, Phys. Rev. C 93, 045805 (2016)

    Article  ADS  Google Scholar 

  187. R.F. Christy, I. Duck, Nucl. Phys. 24, 89 (1961)

    Article  Google Scholar 

  188. T.A. Tombrello, P.D. Parker, Phys Rev. 131, 2582 (1963)

    Article  ADS  Google Scholar 

  189. G.G. Ryzhikh, R.A. Eramzhyan, S. Shlomo, Phys. Rev. C 51, 3240 (1995)

    Article  ADS  Google Scholar 

  190. K.M. Nollett, R.B. Wiringa, R. Schiavilla, Phys. Rev. C 63, 024003 (2001)

    Article  ADS  Google Scholar 

  191. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer, New York, 1977)

    Book  MATH  Google Scholar 

  192. R.G.H. Robertson et al., Phys. Rev. Lett. 47, 1867 (1981)

    Article  ADS  Google Scholar 

  193. P. Mohr et al., Phys. Rev. C 50, 1543 (1994)

    Article  ADS  Google Scholar 

  194. E.M. Tursunov et al., Phys. Rev. C 98, 055803 (2018)

    Article  ADS  Google Scholar 

  195. G. Caughlan, W. Fowler, At. Data Nucl. Data Tables 40, 283 (1988)

    Article  ADS  Google Scholar 

  196. C. Angulo et al., Nucl. Phys. A 656, 3 (1999)

    Article  ADS  Google Scholar 

  197. Planck Collaboration, P.A.R. Ade, N. Aghanim et al., A&A 580, A22 (2015)

  198. A. Coc et al., ApJ 744, 158 (2012)

    Article  ADS  Google Scholar 

  199. A. Kontos et al., Phys. Rev. C 87, 065804 (2013)

    Article  ADS  Google Scholar 

  200. F. Confortola et al., Phys. Rev. C 75, 065803 (2007)

    Article  ADS  Google Scholar 

  201. I.S. Gradsteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 4th edn (Academic Press, London, 1980) (Translated from Russian)

  202. H. van Haeringen, Charged-Particle-Interactions, Theory and Formulas (Coulomb Press Leyden, Leiden, 1985)

    Google Scholar 

  203. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (U.S. Government Printing Office, Washington D.C., 1972). Tenth Printing with Corrections

Download references

Acknowledgements

L.B. thanks the Russian Foundation for Basic Research for the support under the grant 19-02-00014. A.M. acknowledges that this material is based upon work supported by the US DOE National Nuclear Security Administration, under Award Number DE-NA0003841 and DOE Grant No. DE-FG02-93ER40773. A.M. tanks Nelya Nabieva for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mukhamedzhanov.

Additional information

Communicated by Nicolas Alamanos.

Appendices

Appendices

Appendix A: Coulomb elastic scattering, Coulomb scattering wave functions and Coulomb S-matrix

Let us consider the scattering of two point-like charged particles interacting via the pure Coulomb potential

$$\begin{aligned} V^{C}(r)= \frac{Z_{a}\,Z_{A}\,e^{2}}{r}, \end{aligned}$$
(A.1)

\(Z_{i}\,e\) is the charge of particle i.

The Coulomb potential does not satisfy the condition

$$\begin{aligned} \lim \limits _{r \rightarrow \infty } r\,V^{C}(r)=0, \end{aligned}$$
(A.2)

what generates the Coulomb singularities in the k plane. The Coulomb potential between the point-like nuclei also does not satisfy the condition

$$\begin{aligned} \int \limits _{0}^{R} dr\,V^{C}(r) < \infty . \end{aligned}$$
(A.3)

It causes quite complicated behavior of the scattering wave function and the Coulomb elastic scattering S-matrix at \(k=0\), which will be excluded from our consideration.

The Coulomb solutions of the Schrödinger equation at the origin ( \(r=0\)) can be singular or regular. We start our discussion from the singular solutions. The Coulomb singular solutions \(f_{l}^{C(\pm )}(k,r)\) are expressed in terms of the Whittaker functions \(W_{\mp \,i\,\eta , l+1/2}(\mp \,2\,i\,k\,r)\):

$$\begin{aligned} f_{l}^{C(\pm )}(k,r)=e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,W_{\mp \,i\,\eta , l+1/2}(\mp \,i\,2\,k\,r), \end{aligned}$$
(A.4)

where

$$\begin{aligned} \mathrm{sign}(x)= \Biggl \{ \begin{array}{ll} 1 &{} \quad \text{ for }\ x>0, \\ 0 &{} \quad \text{ for }\ x=0, \\ -1 &{} \quad \text{ for }\ x<0. \end{array} \end{aligned}$$
(A.5)

Here we also introduced the Coulomb (Sommerfeld) parameter

$$\begin{aligned} \eta = \frac{Z_{a}\,Z_{A}\,\alpha \,\mu }{k}, \end{aligned}$$
(A.6)

through which the Coulomb interaction manifests itself. It is worth noting that Eq. (A.6) is written in the systems of units in which \(\hbar =c=1\). In this system of units the fine structure constant \(\alpha =1/137\). Note that \(\lim _{k \rightarrow \infty }\,\eta =0\,\) and \(\lim _{k \rightarrow 0}\,\eta =\infty .\) Thus, the Coulomb interaction dominates at small k. Typically, one can neglect the Coulomb effects in nuclear processes at \(\eta \ll 1\).

The Whittaker functions are defined by the integral representations:

$$\begin{aligned} {W_{ \mp \,i\,\eta ,l + 1/2}}( \pm z) = \frac{{{e^{ \mp \frac{z}{2}}}{{( \pm z)}^{ - l}}}}{{\Gamma (l + 1 \pm i\eta )}}\int \limits _0^\infty {dt\,{e^{ - t}}{{\Bigg (1 \pm \frac{z}{t}\Bigg )}^{l \mp i\eta }}\,{t^{2l}}}, \end{aligned}$$
(A.7)

\(\Gamma (l+1\,\pm \,i\,\eta )\) are the Gamma-functions and \(z=-2\,i\,k\,r\).

To determine both Whittaker functions \(W_{\mp \,i\eta ,\,l+1/2}(\mp \,2\,i\,k\,r)\) we use the definitions:

$$\begin{aligned} -z= \Biggl \{ \begin{array}{ll} e^{-i\,\pi }\,z &{}\quad \mathrm{arg}z \in [0,\,\pi ], \\ e^{i\,\pi }\,z &{}\quad \mathrm{arg}z \in [-\pi ,\,0]. \end{array} \end{aligned}$$
(A.8)

From Eq. (A.8) follows that \(-\,\pi \le \mathrm{arg} (\pm \,z) \le \pi \) what is required by the above definition of the Whittaker functions.

The Whittaker function \(\,W_{-i\,\eta ,\,l+1/2}(-\,2\,i\,k\,r)\,\) is an analytic function everywhere in the open k plane except for the branching point singularity at \(k=0\) and a discontinuity along the negative imaginary axis. Correspondingly, \(\,W_{i\,\eta ,\,l+1/2}(\,2\,i\,k\,r)\,\) has the branching point singularity at \(k=0\) and a discontinuity along the positive imaginary axis in the k plane. Thus, the linear combination of two Whittaker functions \(\frac{{(2l)!}}{{\Gamma (l + 1 + \,i\,\eta )}}{W_{i\,\eta ,\,l + 1/2}}(\,2\,i\,k\,r)\, + \,{e^{ - i\pi (l + 1)}}\frac{{(2l)!}}{{\Gamma (l + 1 - \,i\,\eta )}}{W_{ - i\,\eta ,\,l + 1/2}}( - \,2\,i\,k\,r)\) has a discontinuity along the entire imaginary axis in the k plane, which splits this linear combination into two different analytical functions; one is in the left half-plane (\(\mathrm{Re} k <0\)) and the other is in the right half-plane (\(\mathrm{Re}k >0\)). The factor \(e^{\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\) removes this discontinuity making the linear combination of the Whittaker functions analytic in the entire open k plane in which the point \(k=0\) is excluded, see Eq. (A.43) below.

The asymptotic behavior of the Whittaker functions is

$$\begin{aligned}&W_{\mp \,i\,\eta ,\,l+1/2}(\mp \,2\,i\,k\,r) {\mathop {\approx }\limits ^{r \rightarrow \infty }} e^{\pm i\,k\,r}\,(\mp 2\,i\,k\,r)^{\mp i\,\eta }. \end{aligned}$$
(A.9)

The Jost functions are defined as

$$\begin{aligned}&{{\mathcal {F}}}_{l}^{C(\pm )}(k) = \lim \limits _{r \rightarrow 0}\,(\mp \,2\,i\,k\,r)^{l}\, f_{l}^{C(\pm )}(k,r) \nonumber \\&\quad = e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,\lim \limits _{r \rightarrow 0}\,(\mp \,2\,i\,k\,r)^{l}\,W_{ \mp \,i\,\eta ,l + 1/2}(\mp \,2\,i\,k\,r) \nonumber \\&\quad = e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,\frac{\Gamma (2l+2)}{\Gamma (l+1 \pm \,i\,\eta )}. \end{aligned}$$
(A.10)

It is useful to introduce the normalized to unity at \(|k| \rightarrow \infty \) Jost functions:

$$\begin{aligned}&{f}_{l}^{C(\pm )}(k) = e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,\frac{\Gamma (l+1)}{\Gamma (l+1\,\pm \,i\,\eta )}, \end{aligned}$$
(A.11)
$$\begin{aligned}&({f}_{l}^{C(\pm )}(k))^{2} = e^{\mp \,2\,i\,\sigma _{l}^{C}}\,\big |f_{l}^{C(\pm )}(k)\big |^{2}, \end{aligned}$$
(A.12)

and

$$\begin{aligned}&\big |{f}_{l}^{C(+)}(k)\big |^{-2}= \nu _{l}(\eta ^{2})\,\frac{2\,\pi \,\eta }{e^{2\,\pi \,\eta } - 1}, \end{aligned}$$
(A.13)
$$\begin{aligned}&\nu _{l}(\eta ^{2})= \displaystyle \prod _{n=1}^{l}\,\Big [1 + \frac{\eta ^{2}}{n^{2}}\Big ], \quad l>0, \end{aligned}$$
(A.14)

\(\nu _{0}(\eta ^{2}) =1\). To derive Eq. (A.13) we have used the relationship, see Eqs. 8.331 and 8.332 [201],

$$\begin{aligned} \Big (\frac{(\Gamma (l+1 \pm i\,\eta )}{\Gamma (l+1)}\Big )^{2}\,e^{-\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}=e^{\pm \,2\,i\,\sigma _{l}^{C}}\,\nu _{l}(\eta ^{2})\,\frac{2\,\pi \,\eta }{e^{2\,\pi \,\eta } - 1 }. \end{aligned}$$
(A.15)

The Coulomb scattering S-matrix is

$$\begin{aligned} {{\mathbb {S}}}_{l}^{C}(k) = \frac{{{\mathcal {F}}}_{l}^{C(-)}(k)}{{{\mathcal {F}}}_{l}^{C(+)}(k)} = e^{2\,i\,\sigma _{l}^{C}} = \,\frac{\Gamma (l+1+i\,\eta )}{\Gamma (l+1-i\,\eta )}, \end{aligned}$$
(A.16)

\(\sigma _{l}^{C}\) is the Coulomb scattering phase shift in the partial wave l. The gamma-functions \(\Gamma (l+1\pm \,i\,\eta )\) are analytic functions in the entire k plane except for the simple poles at \(l+1 \pm i\,\eta = -n\), where \(n= 0,1,2\ldots \) Hence \(\,\Gamma (l+1 \pm i\,\eta )\,\) has simple poles located in the \(\,k\,\) plane at points \(\,k = \mp \, i({\,Z_{a}\,Z_{A}\,\mu /137})/(l+1+n).\,\) For the repulsive case, \(Z_{a}\,Z_{A} >0,\,\) \(\,\Gamma (l+1 + \,i\,\eta )\) has poles located along the negative imaginary axis in the k plane. For nuclear processes these poles are unphysical. The poles of \(\Gamma (l+1-i\,\eta )\), which are zeroes of the \( {{\mathbb {S}}}_{l}^{C}(k)\), are located along the positive imaginary axis in the k plane.

Often in the literature another Jost solutions are used, which are called ingoing and outgoing solutions:

$$\begin{aligned}&I_{l}(k,\,r)= e^{i\,\pi \,l/2}\,f_{l}^{C(-)}(k,r)\nonumber \\&\quad =e^{i\,\pi \,l/2}\,e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,W_{i\,\eta , l+1/2}(2\,i\,k\,r) \end{aligned}$$
(A.17)
$$\begin{aligned}&\quad = i(-1)^{l}(2\,k\,r)^{l+1}\,e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,\nonumber \\&\qquad \times e^{-i\,\,k\,r}\,U(l+1-i\,\eta , 2\,l+2, 2\,i\,k\,r), \end{aligned}$$
(A.18)
$$\begin{aligned}&O_{l}(k,\,r)= e^{-i\,\pi \,l/2}\,f_{l}^{C(+)}(k,r)\nonumber \\&\quad = e^{-i\,\pi \,l/2}\, e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,W_{-\,i\,\eta , l+1/2}(-2\,i\,k\,r) \end{aligned}$$
(A.19)
$$\begin{aligned}&\quad = i\,(-1)^{l+1}(2\,k\,r)^{l+1}\,e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,\nonumber \\&\qquad \times e^{i\,\,k\,r}\,U(l+1+i\,\eta , 2\,l+2, -2\,i\,k\,r). \end{aligned}$$
(A.20)

Here we took into account that at real k \(\,I_{l}(k,\,r)= O^{*}_{l}(k,\,r)\). \(\,U(l+1+i\,\eta , 2\,l+2, -2\,i\,k\,r)\) is the confluent hypergeometric function of the second kind or Tricomi function.

The asymptotic behavior of \(I_{l}(k,\,r)\) and \(O_{l}(k,\,r)\) is:

$$\begin{aligned}&I_{l}(k,\,r) {\mathop {\approx }\limits ^{r \rightarrow \infty }} e^{-i[k\,r- \eta \,\ln (2\,k\,r) - \pi \,l/2] }, \end{aligned}$$
(A.21)
$$\begin{aligned}&O_{l}(k,\,r) {\mathop {\approx }\limits ^{r \rightarrow \infty }} e^{i[k\,r- \eta \,\ln (2\,k\,r) - \pi \,l/2] }. \end{aligned}$$
(A.22)

Popular Coulomb wave functions are regular \(F_{l}(k,\,r)\) and singular (at the origin) \(G_{l}(k,\,r)\) solutions:

$$\begin{aligned}&F_{l}(k,\,r)= \frac{ e^{ i\,\sigma _{ l }^{C}}\,O_{l}(k,\,r ) - e^{-i\,\sigma _{ l }^{C}}\,I_{l}(k,\,r ) }{2\,i} \end{aligned}$$
(A.23)
$$\begin{aligned}&\quad = (-2k\,r)^{l+1}\,e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,\mathrm{Re}\nonumber \\&\qquad \times \big [e^{i(k\,r + \sigma _{l}^{C})}\,U(l+1+i\,\eta , 2\,l+2, -2\,i\,k\,r)\big ] \end{aligned}$$
(A.24)
$$\begin{aligned}&\quad = e^{-\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\,\frac{ |\Gamma (l+1+ i\,\eta )|}{2\,\Gamma (2\,l+2)}\,(2\,k\,r)^{l+1}\,e^{i\,k\,r}\, \nonumber \\&\qquad \times {}_{1}F_{1}(l+1+i\,\eta , 2\,l+2; -2\,i\,k\,r), \end{aligned}$$
(A.25)
$$\begin{aligned}&G_{l}(k,\,r)= \frac{ e^{i\,\sigma _{ l }^{C}}\,O_{l}(k,\,r ) + e^{-i\,\sigma _{ l }^{C}}\,I_{l}(k,\,r ) }{2} \end{aligned}$$
(A.26)
$$\begin{aligned}&\quad = (-2\,k\,r)^{l+1}\,e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\, \mathrm{Im}\big [e^{i\,(k\,r + \sigma _{l}^{C})}\,\nonumber \\&\qquad \times U(l+1+i\,\eta , 2\,l+2, -2\,i\,k\,r)\big ], \end{aligned}$$
(A.27)
$$\begin{aligned}&I_{l}(k,\,r ) = e^{i\,\sigma _{l}^{C}}\,\big [G_{l}(k,\,r)- i\,F_{l}(k,\,r)\big ], \end{aligned}$$
(A.28)
$$\begin{aligned}&O_{l}(k,\,r ) = e^{-i\,\sigma _{l}^{C}}\,\big [G_{l}(k,\,r) + i\,F_{l}(k,\,r)\big ]. \end{aligned}$$
(A.29)

At the origin (\(r \rightarrow 0\)) \(F_{l}(k,\,r)\) and \(G_{l}(k,\,r)\) behave as

$$\begin{aligned}&F_{l}(k,\,r) {\mathop {=}\limits ^{r \rightarrow 0}} {{\mathcal {C}}}_{l}\,\,(k\,r)^{l+1}\,\,\Big [ 1+ \frac{\eta \,k\,r}{l+1} + O_{l}((k\,r)^{2})\Big ], \end{aligned}$$
(A.30)
$$\begin{aligned}&G_{0}(k,\,r) {\mathop {=}\limits ^{r \rightarrow 0}} {{\mathcal {C}}}_{0}^{-1}\,\Big [1+ 2\,\eta \,k\,r\,\ln (k\,r)\Big ] + O_{0}(k\,r), \end{aligned}$$
(A.31)
$$\begin{aligned}&G_{l}(k,\,r) {\mathop {=}\limits ^{r \rightarrow 0}} {{\mathcal {C}}}_{l}^{-1}\,\frac{(k\,r)^{-l}}{2\,l+1}\,\Big [1+ \eta \,l^{-1}O_{l}(k\,r)\Big ]. \end{aligned}$$
(A.32)

For \(k \rightarrow 0\) so that \(\eta>> k\,r\)

$$\begin{aligned}&F_{l}(k,\,r) {\mathop {\approx }\limits ^{k \rightarrow 0}} \frac{ (2\,l+1)!\, {{\mathcal {C}}}_{l}}{(2\,\eta )^{l+1}}\,(2\,\eta \,k\,r)^{1/2}\, I_{2\,l+1}[2\,(2\,\eta \,k\,r)^{1/2}], \end{aligned}$$
(A.33)
$$\begin{aligned}&G_{l}(k,\,r) {\mathop {\approx }\limits ^{k \rightarrow 0}} \frac{2\,(2\,\eta )^{l}}{(2\,l+1)!\, {{\mathcal {C}}}_{l}}\,(2\,\eta \,k\,r)^{1/2}\, K_{2\,l+1}[2\,(2\,\eta \,k\,r)^{1/2}]. \end{aligned}$$
(A.34)

\(I_{2\,l+1}(z)\) and \(K_{2\,l+1}[2\,(2\,\eta \,k\,r)^{1/2}]\) are Bessel functions of the integer order \(2\,l+1\). For Eqs. (A.30)–(A.32) the reader is referred to [202], see SF.3, page 485, and for Eqs. (A.33) and (A.34) the reader is referred to [203], Eqs. 14.6.7.

$$\begin{aligned}&{{\mathcal {C}}}_{l}= \lim \limits _{r \rightarrow 0} \frac{F_{l}(k,\,r)}{(k\,r)^{l+1} }\, =\, \frac{1}{(2\,l+1)!!}\,{{\mathcal {C}}}_{0}\,[\nu _{l}(\eta ^{2})]^{1/2}, \end{aligned}$$
(A.35)
$$\begin{aligned}&{{\mathcal {C}}}_{0}^{2}= \frac{2\,\pi \,\eta }{e^{2\,\pi \,\eta } -1}. \end{aligned}$$
(A.36)

\(\nu _{l}(\eta ^{2})\) is defined in (A.14).

In view of Eq. (A.13), Eq. (A.35) can be written in the following form:

$$\begin{aligned} {{\mathcal {C}}}_{l}^{2} = \frac{1}{[(2\,l+1)!!]^{2}}\,|f_{l}^{C(+)}(k)|^{-2}. \end{aligned}$$
(A.37)

\( {{\mathcal {C}}}_{l}\) is the amplitude of the regular Coulomb solution \(F_{l}(k,\,r)\) at \(r \rightarrow 0\). Hence, \({{\mathcal {C}}}_{l}^{2}\) is called the Coulomb penetration factor in the partial wave l because it determines the probability for a particle to be found at \(r=0\).Footnote 1 Note that \({{\mathcal {C}}}_{l}^{2}\) differs from the Coulomb penetrability factor, which appears in the R-matrix approach:

$$\begin{aligned} P_{l}(k)= \frac{k\,R_{ch}}{F_{l}^{2}(k,\,R_{ch}) + G_{l}^{2}(k,\,R_{ch}) }. \end{aligned}$$
(A.38)

\(R_{ch}\) is the R-matrix channel radius, which can be taken as the sum of the radii of the interacting particles or as the radius of the strong interaction.

Taking into account Eq. (A.35) one can rewrite \(F_{l}(k,\,r)\) as

$$\begin{aligned}&F_{l}(k,\,r)= {{\mathcal {C}}}_{l}\,(k\,r)^{l+1}\,e^{i\,k\,r}\,{}_{1}F_{1}(l+1+ i\,\eta , 2\,l+2; -2\,i\,k\,r), \end{aligned}$$
(A.39)

where \(\,{}_1F_{1}(l+ 1 + i\,\eta , \,2\,l + 2; \, -2\,i\,k\,r)\,\) is the Kummer confluent hypergeometric function of the first order.

Note that at \(r=R_{ch}\) and \(\,k \rightarrow 0\,\) in view of Eqs. (A.33) and (A.34) one gets

$$\begin{aligned} \frac{ F_{l}(k,\,r) }{ G_{l}(k,\,r) } {\mathop {\approx }\limits ^{k \rightarrow 0}} \frac{ {{\mathcal {C}}}_{l}^{2}\,\eta \,[( 2\,l+1)!]^{2} }{2\,(2\,\eta )^{2\,l+1}}\,\frac{I_{2\,l+1}[2\,(2\,\eta \,k\,R_{ch})^{1/2}]}{K_{2\,l+1}[2\,(2\,\eta \,k\,R_{ch})^{1/2}]}. \end{aligned}$$
(A.40)

From Eqs. (A.21)–(A.23) and (A.26) follows the asymptotic behavior of \(F_{l}(k,\,r)\) and \(G_{l}(k,\,r)\):

$$\begin{aligned}&F_{l}(k,\,r) {\mathop {\approx }\limits ^{r \rightarrow \infty }} \sin [k\,r- \eta \,\ln (2\,k\,r) - \pi \,l/2 + \sigma _{l}^{C} ], \end{aligned}$$
(A.41)
$$\begin{aligned}&G_{l}(k,\,r) {\mathop {\approx }\limits ^{r \rightarrow \infty }} \cos [k\,r- \eta \,\ln (2\,k\,r) - \pi \,l/2 + \sigma _{l}^{C} ]. \end{aligned}$$
(A.42)

The wave function \(F_{l}(k,\,r)\) itself is not analytical function because it contains \(|\Gamma (l+1+i\,\eta )|\). The partial Coulomb wave function, which appears in the partial wave expansion of the Coulomb scattering wave function \(\psi _{\mathbf{k }}^{C(+)}(\mathbf{r })\), is \(e^{i\,\sigma _{l}^{C}}\,F_{l}(k,\,r)/(k\,r)\):

$$\begin{aligned}&e^{i\,\sigma _{l}^{C}}\,F_{l}(k,\,r) = e^{- \pi \,\eta /2\,\mathrm{sign}\mathrm{Re}k }\,\frac{\Gamma (l + 1+ i\,\eta )}{2\,\Gamma (2\,l+ 2)}\,(2\,k\,r)^{l + 1} \nonumber \\&\quad \times e^{i\,k\,r}\, {}_1F_{1}(l + 1 + i\,\eta , 2\,l + 2; -2\,i\,k\,r). \end{aligned}$$
(A.43)

It is analytic function in the complex k plane except the simple poles at \(l+1 \pm i\,\eta = -n\) of \(\,\Gamma (l+1 +\,i\,\eta )\,\) function, where \(n= 0,1,2\ldots .\)

Following [101], we construct another regular Coulomb solution called also a physical solution of the Coulomb Schrödinger equation. It is a regular at the origin (\(r=0\)) and analytic in the entire complex k plane (except the point \(k=0\) and the poles of \(\,\Gamma (l+1+i\,\eta )\,\) scattering solution of the Schrödinger equation:

$$\begin{aligned}&{\varphi }_{l}^{C(+)}(k,r)= e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\Big [\,f_{l}^{C(-)}(k,r) \nonumber \\&\qquad + e^{-i\,\pi \,(l+1)}{{\mathbb {S}}}_{l}^{C}(k)\,f_{l}^{C(+)}(k,r) \Big ] \end{aligned}$$
(A.44)
$$\begin{aligned}&\quad =e^{\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\Big [\,W_{\,i\,\eta , l+1/2}(2\,i\,k\,r) \nonumber \\&\qquad + e^{-i\,\pi \,(l+1)}{{\mathbb {S}}}_{l}^{C}(k)\,W_{-\,i\,\eta , l+1/2}(-2\,i\,k\,r) \Big ] \end{aligned}$$
(A.45)
$$\begin{aligned}&\quad = (-2\,i\,k\,r)^{l+1}\,\frac{\Gamma (l+1+i\,\eta )}{\Gamma (2\,l+2)}\,\nonumber \\&\qquad \times e^{i\,k\,r}\,{}_1F_{1}(l + 1 + i\eta ,\, 2\,l + 2;\, -2\,i\,k\,r) \end{aligned}$$
(A.46)
$$\begin{aligned}&\quad =2\, e^{\frac{1}{2}\,\pi \,\eta \,\mathrm{sign}\mathrm{Re}k}\, e^{-i\,\pi \,(l+1)/2}\,e^{i\,\sigma _{l}^{C}}\,F_{l}(k,\,r). \end{aligned}$$
(A.47)

Summary of analytical properties of the Coulomb wave functions:

  1. 1.

    Singular at the origin (\(r=0\)) Whittaker function \(\,{W_{ - \,i\,\eta ,l + 1/2}}(- 2\,i\,k\,r)\,\) ( \(\,{W_{ \,i\,\eta ,l + 1/2}}(2\,i\,k\,r))\,\) is analytic function in the open k plane except the branching point singularity at \(k=0\) and a discontinuity along the negative (positive) imaginary axis.

  2. 2.

    The physical solution \({\varphi }_{l}^{C}(k,r)\) is analytic function in the entire k plane except the point \(k=0\) and the simple poles along the imaginary negative axis in the k plane generated by \(\Gamma ( l+1 +i\,\eta )\).

Appendix B: Nuclear-Coulomb scattering

Having established the analytical structure of the regular Coulomb scattering solution we proceed now to the scattering of two point-like particles interacting via the Coulomb plus nuclear potentials. During scattering process charged particles emit infinite number of photons. It requires a redefinition of the scattering S-matrix in the limit of zero photon mass. The redefined S-matrix contains in the k-plane the infrared (Coulomb) singularities. In the potential theory these singularities are caused by the infinite-range Coulomb potential. The Coulomb singularities can be explicitly singled out.

The obtained renormalized S-matrix on the physical sheet (upper half k plane) does not contain the Coulomb singularities and behaves like the one for short-range interactions. This renormalized S-matrix has bound-state poles on the positive imaginary axis in the k plane and the resonances in the third and fourth quadrants in the k plane, see Fig. 1. In what follows, we discuss the analytical structure of the elastic scattering in the presence of the Coulomb interaction, its renormalization and determine the residues in the bound-state and resonant poles of the elastic scattering.

Let us consider the scattering of two charged spinless particles a and A (we disregard the spins because they don’t affect the Coulomb renormalization) interacting via the local, energy-independent potential

$$\begin{aligned} V(r)= V^{C}(r) + V^{N}(r), \end{aligned}$$
(B.1)

where the Coulomb potential \(V^{C}(r)\) and the nuclear potential \(V^{N}(r)\) have been already introduced.

A reduced regular radial solution \(\varphi _{l}(k,\,r) \) satisfies the Schrödinger equation

$$\begin{aligned}&\Bigg (E + \frac{1}{2\,\mu }\,\frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}}- V^{centr}_{l}(r) - V^{C}(r) \Bigg )\,\varphi _{l}(k,r) \nonumber \\&\quad = V^{N}(r)\varphi _{l}(k,r), \end{aligned}$$
(B.2)

where E is the relative kinetic energy of the interacting particles, \(\,V^{centr}_{l}(r)\,\) is the centrifugal potential.

A singular radial solution \(f_{l}^{(+)}(k,r)\) (\(f_{l}^{(-)}(k,r)\)) corresponding to asymptotically outgoing wave (incident wave) satisfies a similar equation for \(r >0\). A regular solution is a linear combination of singular solutions \(f_{l}^{(+)}(k,r)\) and \(f_{l}^{(-)}(k,r)\). At \(r \rightarrow 0\) a regular solution behaves as \(\sim r^{l+1}\). Singular solutions at \(r \rightarrow 0\) behaves as \(\sim r^{-l}\). Regular and singular solutions of the Schrödinger equation represent solutions belonging to two different types, which are linearly independent. Regular solutions can differ only by the overall normalization factor.

The Shrödinger equation (B.2) is a differential equation which is the same for regular and singular solutions. But equivalent integral equations for two types of solutions are different and are given by Volterra type integral equations [101]:

$$\begin{aligned}&\varphi _{l}(k,r)= { \varphi }_{l}^{C}(k,r) - \int \limits _{0}^{r}\,\mathrm{d}r'\, K^{(+)}(r,r')\,\varphi _{l}(k,r'), \end{aligned}$$
(B.3)
$$\begin{aligned}&f_{l}^{(+)}(k,r)= f_{l}^{C(+)}(k,r) + \int \limits _{r}^{\infty }\,\mathrm{d}r'\, K^{(+)}(r,r')\,f_{l}^{(+)}(k,r'). \end{aligned}$$
(B.4)

Similar equations can be obtained using \(f_{l}^{(-)}(k)\) rather than \(f_{l}^{(+)}(k)\).

The kernel of these integral equations is

$$\begin{aligned} K(r,r')&= \frac{1}{{{\mathcal {W}}}^{C}(k)}\,\Bigg [ f_{l}^{C(+)}(k,r)\,{\varphi }_{l}^{C}(k,r') \nonumber \\&\quad - f_{l}^{C(+)}(k,r')\,{\varphi }_{l}^{C}(k,r) \Bigg ]\,V^{N}(r'), \end{aligned}$$
(B.5)

where the Coulomb Wronskian \({{\mathcal {W}}}^{C}(k)=-2\,i\,k\), see Eq. (C.17).

One can introduce another regular scattering wave function, which differs only by normalization from the wave function \(\varphi _{l}(k,r)\) determined by Eq. (B.3):

$$\begin{aligned} {{\hat{\varphi }}}_{l}(k,r)= \Big [{{\mathcal {F}}}_{l}^{(+)}(k)\,f_{l}^{(-)}(k,r) - (-1)^{l}\,{{\mathcal {F}}}_{l}^{(-)}(k)\,f_{l}^{(+)}(k,r) \Big ]. \end{aligned}$$
(B.6)

The Jost functions are determined by

$$\begin{aligned} {{\mathcal {F}}}_{l}^{(\pm )}(k) = \lim \limits _{r \rightarrow 0}\,(\mp \, 2\,i\,k\,r)^{l}\,f_{l}^{(\pm )}(k,r). \end{aligned}$$
(B.7)

The Wronskian of the regular and singular solutions for the Coulomb plus nuclear potential does not depend on the radius and is given by:

$$\begin{aligned} {{\mathcal {W}}}(k)&= f_{l}^{(+)}(k,r)\,\frac{\mathrm{d}{\varphi }_{l}(k,r)}{\mathrm{d}r} - \frac{\mathrm{d}f_{l}^{(+)}(k,r)}{\mathrm{d}r}\,{\varphi }_{l}(k,r) \nonumber \\&= {{\mathcal {W}}}^{C}(k)\,\Bigg [1 + \frac{1}{{{\mathcal {W}}}^{C}(k)}\,\int \limits _{0}^{\infty }\,\mathrm{d}r\,{ \varphi }_{l}^{C}(k,r)\,V^{N}(r)\,f_{l}(k,r)\,\Bigg ]. \end{aligned}$$
(B.8)

Appendix C: ANC of bound state in terms of source term and Wronskian

In this Appendix we derive the expression for the ANC in terms of the source term and then transform it into the Wronskian form. First, we derive the expression for the ANC using the Pinkston–Satchler equation for the radial overlap function containing the source term [13, 79,80,81]. Note that the overlap function is not an eigenfunction of any Hermitian Hamiltonian. To derive the equation for the overlap function containing the source term, we start from the Schrödinger equation for the bound state of the parent nucleus \(B=(a\,A)\):

$$\begin{aligned} (-\varepsilon _{B} - {{\widehat{T}}}_{A} - {{\widehat{T}}_a} - {{\widehat{T}}_{aA}} - \,V_{a} - \,V_{A} - V_{aA} ){\phi _B}({\xi _a},{\xi _A};\,\mathbf{r }_{aA}) = 0. \end{aligned}$$
(C.1)

Here, \({{\widehat{T}}}_i\) is the internal motion kinetic energy operator of nucleus i, \(\,{{\widehat{T}}_{aA}}\) is the kinetic energy operator of the relative motion of nuclei a and A, \(V_{i}\) is the internal potential of nucleus i and \(V_{aA}\) is the interaction potential between a and A, \(\varepsilon _{B}\) is the binding energy of nucleus B.

Multiplying the Schrödinger equation from the left by

$$\begin{aligned}&\,{\left( \begin{aligned} A \\ a \\ \end{aligned} \right) ^{1/2}}\,\sum \limits _{{m_{{j_B}}}\,{m_{{l_B}}}\,M_{a}M_{A}}\,\langle {J_A}{M_A}\,\,{j_B}{m_{{j_B}}}|{J_B}{M_B} \rangle \nonumber \\&\quad \times \langle {J_a}{M_a}\,{l_B}{m_{{l_B}}}|{j_B}{m_{{j_B}}} \rangle \,{Y^{*}_{{l_B}{m_{{l_B}}}}}({{\widehat{\mathbf{r }}}}_{aA})\,\phi _{A}^{*}(\xi _{A})\,\phi _{a}^{*}(\xi _{a}) \end{aligned}$$
(C.2)

and taking into account Eq. (106) we get the equation for the radial overlap function with the source term [81]

$$\begin{aligned}&\Big (-\varepsilon _{aA} - {{\widehat{T}}}_{r_{aA}}- V^{centr}_{l_{B}} - U_{aA}^{C} \Big )\,r_{aA}\,I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}(r_{aA}) \nonumber \\&\quad = r_{aA}\,Q_{l_{B}j_{B}J_{a}J_{A}J_{B}}(r_{aA}). \end{aligned}$$
(C.3)

Here, \({{\hat{T}}}_{r_{aA}}\) is the radial relative kinetic energy operator of the particles a and A, \(\,V_{l_{B}}^{centr}\) is the centrifugal barrier for the relative motion of a and A with the orbital momentum \(l_{B}\), \(\,Q_{l_{B}j_{B}J_{a}J_{A}J_{B}}(r_{aA})\) is the source term

$$\begin{aligned}&Q_{l_{B}j_{B}J_{a}J_{A}J_{B}}(r_{aA}) \nonumber \\&\quad = \sum \limits _{m_{j_B} \,m_{l_B}\,M_{a}\,M_{A}} { \langle {J_A}{M_A}\,\,{j_B}{m_{{j_B}}}|{J_B}{M_B} \rangle \langle {J_a}{M_a}\,{l_B}{m_{{l_B}}}|{j_B}{m_{{j_B}}} \rangle }\nonumber \\&\qquad \times \,{\left( \begin{aligned}A \\ a \\ \end{aligned} \right) ^{1/2}}\,\int \,\mathrm{d}\,\Omega _{\mathbf{r }_{aA}}\,\langle \phi _{a}(\xi _{a})\,\phi _{A}(\xi _{A})\nonumber \\&\qquad \times |V_{aA} - U_{aA}^{C}|Y_{{l_B}{m_{{l_B}}}}^{*}({{\widehat{\mathbf{r }}}}_{aA})\phi _{B}(\xi _{a},\xi _{A};\mathbf{r }_{aA})\rangle . \end{aligned}$$
(C.4)

The integration in the matrix element in Eq. (C.4) is carried out over all the internal coordinates \(\xi _{a}\) and \(\xi _{A}\) of nuclei a and A, respectively. Note that we replaced the antisymmetrization operator \({{\hat{A}}}_{aA}\) in Eq. (C.2) by \({\left( \begin{aligned}A \\ a \\ \end{aligned} \right) ^{1/2}}\) because the operator \(-\varepsilon _{aA} - {{\widehat{T}}_A} - {{\widehat{T}}_a} - {{\widehat{T}}_{aA}} - \,V_{a} - \,V_{A} - V_{aA}\) in Eq. (C.1) is symmetric over interchange of nucleons of a and A, while \(\phi _{B}\) is antisymmetric. For charged particles it is convenient to single out the channel Coulomb interaction \(U_{aA}^{C}(r_{aA})\) between the center of mass of nuclei a and A:

$$\begin{aligned} I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}(r_{aA})&= \,\frac{1}{r_{aA}}\,\int \limits _{0}^{\infty }\,\mathrm{d}r'_{aA}\,r'_{aA}\,G_{l_{B}}^{C}(r_{aA},\,r'_{aA}; i\,\kappa _{aA}) \nonumber \\&\quad \times Q_{l_{B}j_{B}J_{a}J_{A}J_{B}}(r'_{aA}), \end{aligned}$$
(C.5)

where \(G_{l_{B}}^{C}(r_{aA},\,r'_{aA}; i\,\kappa _{aA})\,\) is the partial Coulomb Green function.

Owing to the presence of the short-range potential operator \(V_{aA} - U_{aA}^{C}\) (potential \(V_{aA}\) is the sum of the nuclear \(V^{N}_{aA}\) and the Coulomb \(V_{aA}^{C}\) potentials and subtraction of \(U_{aA}^{C}\) removes the long-range term from \(V_{aA}\)) the source term is also a short-range function and we approximate Eq. (C.5) by

$$\begin{aligned} I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}(r_{aA})&= \,\frac{1}{r_{aA}}\,\int \limits _{0}^{R_{ch}}\,\mathrm{d}r'_{aA}\,r'_{aA}\,G_{l_{B}}^{C}(r_{aA},\,r'_{aA}; i\,\kappa _{aA}) \nonumber \\&\quad \times Q_{l_{B}j_{B}J_{a}J_{A}J_{B}}(r'_{aA}), \end{aligned}$$
(C.6)

where \(R_{ch}\) is the channel radius for the system \(a-A\).

The partial Coulomb two-body Green function at \(k_{aA}>0\) is given by [100]

$$\begin{aligned}&G_{l_{B}}^{C}(r_{aA},r'_{aA}; k_{aA}) = -i\,\frac{\mu _{aA}}{k_{aA}}\, e^{-\frac{1}{2}\,\pi \,\eta _{aA}\,\mathrm{sign}\mathrm{Re}k_{aA}}\, \nonumber \\&\quad \times \,\varphi _{l_{B}}^{C}(k_{aA},\,r_{aA<})\,f_{l_{B}}^{C(+)}(k_{aA},\,r_{>}). \end{aligned}$$
(C.7)

\(\eta _{aA}\) and \(k_{aA}\) are the \(a-A\) Coulomb parameter and relative momentum. Also, \(\,r_{aA<}= \mathrm{min}\,\{r_{aA},r_{aA}' \}\) and \(\,r_{aA>}= \mathrm{max}\,\{r_{aA},r_{aA}' \}\).

From the analytic properties of \(\varphi _{l_{B}}^{C}(k_{aA},\,r_{aA})\) and \(e^{-\frac{1}{2}\,\pi \,\eta _{aA}\,\mathrm{sign}\mathrm{Re}k_{aA}}\,f_{l_{B}}^{C(+)}(k_{aA},\,r)\,\), see the end of Appendix A, follows that the Green function \(G_{l_{B}}^{C}(r_{aA},r_{aA}'; k_{aA})\) has a discontinuity along the negative imaginary axis in the \(k_{aA}\) plane. Extrapolating the Coulomb Green function \(G_{l_{B}}^{C}(r_{aA},r_{aA}'; k_{aA})\) to the point \(k_{aA}= i\,\kappa _{aA}\) corresponding to the bound-state we get

$$\begin{aligned}&G_{l_{B}}^{C}(r_{aA},r'_{aA}; i\,\kappa _{aA}) = - \,\frac{\mu _{aA}}{\kappa _{aA}}\, e^{i\,\pi \,\eta _{aA}^{bs}/2} \nonumber \\&\quad \times \varphi _{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA<})\,f_{l_{B}}^{C(+)}(i\,\kappa _{aA},r_{aA>}). \end{aligned}$$
(C.8)

Substituting this equation into Eq. (C.6) and taking into account Eqs. (107) and (A.47) we get the ANC expressed in terms of the source \(Q_{l_{B}j_{B}J_{a}J_{A}J_{B}}(r_{aA})\) [13, 81]:

$$\begin{aligned}&C_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B} = - \,\frac{\mu _{aA}}{\kappa _{aA}}\,{{\mathcal {R}}}_{1}\,\nonumber \\&\quad \times \int \limits _{0}^{R_{ch}}\,\mathrm{d}r_{aA}\,{{\tilde{\varphi }}}_{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA})\,Q_{l_{B}j_{B}J_{a}J_{A}J_{B}}(r_{aA}). \end{aligned}$$
(C.9)

Now we transform the radial integral in Eq. (C.9) into the Wronskian at \(r_{aA}= R_{ch}\). The philosophy of this transformation is the same as in the surface integral formalism [31, 93, 115] only applied here for bound states.

To this end in Eq. (C.9) we replace the source term \(Q_{l_{B}j_{B}J_{a}J_{A }J_{B}}(r_{aA})\) with the left side of Eq. (C.3):

$$\begin{aligned}&\tilde{C}_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B} = - \,\frac{\mu _{aA}}{\kappa _{aA}}\,\int \limits _{0}^{R_{ch}}\,\mathrm{d}r_{aA}\,{{\tilde{\varphi }}}_{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA})\, \nonumber \\&\quad \times \Big (-\varepsilon _{aA} - {\overrightarrow{{\widehat{T}}}}_{r_{aA}}- V^{centr}_{l_{B}} - U_{aA}^{C} \Big )\,r_{aA}\,I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}(r_{aA}). \end{aligned}$$
(C.10)

Here the kinetic energy operator \({\overrightarrow{{\widehat{T}}}}_{r_{aA}}\) acts on the radial overlap function \(I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}(r_{aA})\).

In view of the equation

$$\begin{aligned}&{{\tilde{\varphi }}}_{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA}) \,\Big (-\varepsilon _{aA} - V^{centr}_{l_{B}} - U_{aA}^{C} \Big ) \nonumber \\&\quad = {{\tilde{\varphi }}}_{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA}) \,{\overleftarrow{{\widehat{T}}}}_{r_{aA}} \end{aligned}$$
(C.11)

one can rewrite Eq. (C.9)

$$\begin{aligned}&\tilde{C}_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B} = \frac{1}{2\,\kappa _{aA}}\, \int \limits _{0}^{R_{ch}}\,\mathrm{d}r_{aA}\,\Bigg [{{\tilde{\varphi }}}_{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA})\nonumber \\&\quad \times \,\Bigg ( \frac{{{{\overleftarrow{d} }^2}}}{{d{r_{aA}^2}}} -\frac{{{{\overrightarrow{d} }^2}}}{{d{r_{aA}^2}}} \Bigg )\,r_{aA}\,I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}(r_{aA})\Bigg ]. \end{aligned}$$
(C.12)

Taking into account the definition of the Wronskian

$$\begin{aligned} {{\mathcal {W}}}[f(r),\,g(r)) ]= f(r)\,\frac{ \mathrm{d}g(r)}{\mathrm{d}r} -g(r)\,\frac{\mathrm{d}f(r)}{\mathrm{d}r} \end{aligned}$$
(C.13)

one can express the ANC in terms of the Wronskian:

$$\begin{aligned}&\tilde{C}_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B} = \,\frac{1}{2\,\kappa _{aA}}\, {{\mathcal {W}}}[r_{aA}\,I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^B({r_{aA}}),\nonumber \\&\qquad \quad {{\tilde{\varphi }}}_{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA}) ]\Big |_{r_{aA}=R_{ch}} \end{aligned}$$
(C.14)
$$\begin{aligned}&\quad = \frac{1}{2\,\kappa _{aA}}\,\Bigg ( r_{aA}\,I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^B({r_{aA}})\,\frac{\mathrm{d}{{\tilde{\varphi }}}_{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA})}{\mathrm{d}r_{aA}}\nonumber \\&\qquad -{{\tilde{\varphi }}}_{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA})\,\frac{\mathrm{d}\big [r_{aA}\,I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^B({r_{aA}})\big ]}{\mathrm{d}r_{aA}} \Bigg )\,\Big |_{r_{aA}=R_{ch}}. \end{aligned}$$
(C.15)

Note that Eqs. (C.14) and (C.15) have been derived by transforming the internal integral into the Wronskian at the channel radius \(R_{ch}\). At too small radii \(R_{ch}\) the Wronskian \({{\mathcal {W}}}[r_{aA}\,I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^B({r_{aA}}),\,{{\tilde{\varphi }}}_{l_{B}}^{C}(i\,\kappa _{aA},\,r_{aA}) ]\Big |_{r_{aA}=R_{ch}} \) depends on the channel radius but the sensitivity to the radius decreases as \(\,R_{ch} \rightarrow R_{aA}^{N},\,\) where \(\,R_{aA}^{N}\) is the \(a-A\) nuclear interaction radius. At \(\,R_{ch} > R_{aA}^{N}\) one can replace the radial overlap function by its asymptotic term given by Eq. (107). Then Eq. (C.15) turns into identity: \(\,\tilde{C}_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B} \equiv \tilde{C}_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B} \). Here we present this proof.

We consider such a large \(R_{ch}\) that \(r_{aA}I_{aA\,\,{l_B}\,{j_B}\,J_{B}}^B({r_{aA}})\) can be replaced by its asymptotic term \(C_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}\,W_{-\eta _{aA}^{bs},\,l_{B}+1/2}(2\,\kappa _{aA}\,r_{aA})\), see Eq. (107). Replacing \({{\tilde{\varphi }}}_{l_{B}}(i\,\kappa _{aA},\,r_{aA})\) with \(\varphi _{l_{B}}(i\,\kappa _{aA},\,r_{aA})\) using Eq. (122) and taking into account that \( {{\mathcal {W}}}[f_{l_{B}}^{C(+)}(-\kappa _{aA},\,r_{aA}),\,f_{l_{B}}^{C(+)}(-\kappa _{aA},\,r_{aA}) ] =0\) we arrive at

$$\begin{aligned} \tilde{C}_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}&= \,\tilde{C}_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}\,\frac{1}{2\,\kappa _{aA}}\,{{\mathcal {W}}}^{C}(i\,\kappa _{aA} ) \nonumber \\&\equiv \tilde{C}_{aA\,\,{l_B}\,{j_B}\,J_{B}}^{B}. \end{aligned}$$
(C.16)

Here we use the Coulomb Wronskian \({{\mathcal {W}}}^{C}(i\,\kappa _{aA} )\). It is defined as

$$\begin{aligned} {{\mathcal {W}}}^{C}(k_{aA})&= {{\mathcal {W}}}\big [f_{l_{B}}^{C(+)}(i\,k_{aA},\,r_{aA}),\,f_{l_{B}}^{C(-)}(i\,k_{aA},\,r_{aA}) \big ] \nonumber \\&= -2\,i\,k_{aA}, \end{aligned}$$
(C.17)

which does not depend on the radius. Hence the easiest way to calculate it is to consider asymptotic behavior of the Jost functions \(\,f_{l_{B}}^{C(\pm )}(i\,k_{aA},\,r_{aA})\), see Eq. (A.9). For \(k_{aA}= i\,\kappa _{aA}\) the Coulomb Wronskian becomes

$$\begin{aligned} {{\mathcal {W}}}^{C}(i\,\kappa _{aA})&= {{\mathcal {W}}}\big [f_{l_{B}}^{C(+)}(-\kappa _{aA},\,r_{aA}),\,f_{l_{B}}^{C(-)}(-\kappa _{aA},\,r_{aA}) \big ] \nonumber \\&= 2\,\kappa _{aA}. \end{aligned}$$
(C.18)

Appendix D: Modified expression for the surface term

As we have discussed in Sect. 8, the dominant contribution to the transfer reaction amplitude comes from the surface and the external prior terms. Let us rewrite the surface term in the prior form in which the independent Jacobi variables are \({\mathbf{r}}_{xA}\) and \({\mathbf{r}}_{sF}\):

$$\begin{aligned}&{{\mathcal {M}}}_{S}^{DW(prior)} = C_{xA\,l_{B}\,{j_{B}\,J_{B} }\,}^B \,\frac{{R_{ch}^2}}{{2{\mu _{xA}}}}\,\nonumber \\&\quad \times \sum \limits _{m_{l_{B}}\,\,m_{j_{B}}\,M_{x}}\,\langle J_{A}\, M_{A}\,\, j_{B}\, m_{j_{B}}| J_{B}\,M_{B}\rangle \,\langle J_{x}\,M_{x}\,\,l_{B}\,m_{l_{B}}|j_{B}\,m_{j_{B}}\rangle \nonumber \\&\quad \times \langle J_{s}\,M_{s}\,\,J_{x}\,M_{x}| J_{a}\,M_{a}\rangle \,\int {d{{\mathbf{r}}_{sF}}} \chi _{ - {{\mathbf{k}}_{sF}}}^{C( + )}({{\mathbf{r}}_{sF}})\nonumber \\&\quad \times \int d {\Omega _{{{\mathbf{r}}_{xA}}}} Y_{l_{B}m_{l_{B}}}^{*}({{\hat{\mathbf{r }}}}_{xA}) \nonumber \\&\quad \times \left[ \varphi _{a}({\mathbf{r}}_{sx})\,\chi _{ {\mathbf{k}}_{\mathbf{aA}} }^{( + )}({\mathbf{r}}_{aA})\frac{{\partial W_{-\eta ^{bs}_{xA}, l_{B}+1/2}(2\,\kappa _{xA}\,r_{xA})/r_{xA} } }{{\partial {r_{xA}}}}\right. \nonumber \\&\quad \left. - \frac{W_{-\eta ^{bs}_{xA}, l_{B}+1/2}(2\,\kappa _{xA}\,r_{xA})}{r_{xA}} \frac{{\partial {\varphi _{a}}({{\mathbf{r}}_{sx}})\chi _{{{\mathbf{k}}_{{\mathbf{aA}}}}}^{( + )}({{\mathbf{r}}_{aA}})}}{{\partial {r_{xA}}}}\right] \Big |_{{r_{xA}} = {R_{ch}}}. \end{aligned}$$
(D.1)

The external prior DWBA part of the amplitude, similar to the surface term, is also parametrized in terms of the ANC \(C_{xA\,l_{B}\,{j_{B}\,J_{B} }\,}^B\) and reduces to

$$\begin{aligned}&{{\mathcal {M}}}_{ext}^{DW(prior)}= C_{xA\, \, {l_{B}}\,{j_{B}\,J_{B} }\,}^B\nonumber \\&\quad \times \,\sum \limits _{m_{l_{B}}\,\,m_{j_{B}}\,M_{x}}\, \langle J_{A}\, M_{A}\,\, j_{B}\, m_{j_{B}}| J_{B}\,M_{B}\rangle \langle J_{x}\,M_{x}\,\,l_{B}\,m_{l_{B}}|j_{B}\,m_{j_{B}}\rangle \nonumber \\&\quad \times \langle J_{s}\,M_{s}\,\,J_{x}\,M_{x}| J_{a}\,M_{a}\rangle \nonumber \\&\quad \times \big <\chi _{\mathbf{k }_{sF}}^{(-)}\,\frac{ W_{ - \eta _{xA}^{bs},\,{l_B} + 1/2 }(2\,\kappa _{xA}\,r_{xA})}{r_{xA} }\,Y_{l_{B}m_{l_{B}}}({{\hat{\mathbf{r }}}}_{xA})\nonumber \\&\quad \times \big | V_{sA}^{C} + V_{xA}^{C} - U_{aA}^{C} \big | \varphi _{sx}\,\chi _{\mathbf{k }_{aA}}^{(+)}\big>\Big |_{r_{xA} > R_{ch}}. \end{aligned}$$
(D.2)

Owing to the strong absorption in the nuclear interior caused by the optical potentials, the internal DWBA post form, as have been discussed in Sect. 8, is small compared to the surface and external prior amplitude.

We transform now the surface matrix element into zero-range DWBA amplitude. To this end we use

$$\begin{aligned} \mathbf{r }_{aA}= \mathbf{r }_{xA} + \frac{m_{s}}{m_{sx}}\,\mathbf{r }_{sx}, \quad \mathbf{r }_{sF}= \frac{m_{A}}{m_{xA}}\,\mathbf{r }_{xA} +\mathbf{r }_{sx}. \end{aligned}$$
(D.3)

Rewriting the wave functions \(\chi _{{\mathbf{k }_{aA}}}^{( + )}({\mathbf{r _\mathbf{aA }}})\,\) and \(\chi _{ - {\mathbf{k }_{sF}}}^{( + )}({\mathbf{r }_{sF}})\) in the momentum space we get

$$\begin{aligned}&{{\mathcal {M}}}_{S}^{DW(prior)} = \frac{{R_{ch}^2}}{{2{\mu _{xA}}}}\, C_{xA\, \, {l_{B}}\,{j_{B}\,J_{B} }\,}^B\,\nonumber \\&\quad \times \sum \limits _{m_{l_{B}}\,\,m_{j_{B}}\,M_{x}}\,\langle J_{A}\, M_{A}\,\, j_{B}\, m_{j_{B}}| J_{B}\,M_{B}\rangle \langle J_{x}\,M_{x}\,\,l_{B}\,m_{l_{B}}|j_{B}\,m_{j_{B}}\rangle \nonumber \\&\quad \times \langle J_{s}\,M_{s}\,\,J_{x}\,M_{x}| J_{a}\,M_{a}\rangle \ \int {d{\mathbf{r }_{sF}}}\, \int \,\frac{ \mathrm{d}\mathbf{p }_{sF} }{(2\,\pi )^{3} }\, \nonumber \\&\quad \times \int \,\frac{\mathrm{d}\mathbf{p }_{aA}}{(2\,\pi )^{3}}\, \chi _{-{\mathbf{k }_{sF}}}^{( + )}({\mathbf{p }_{sF}})\,\chi _{{\mathbf{k }_{aA}}}^{( + )}({\mathbf{p _\mathbf{aA }}})\,\varphi _{sx}(\mathbf{r }_{sx}) {e^{-i\mathbf{p }_{sx} \cdot {\mathbf{r }_{sx}}}}\nonumber \\&\quad \times \int d{\Omega _{\mathbf{r }_{xA}}}\,Y_{l_{B}m_{l_{B}} }^{*}({{\hat{\mathbf{r }}}}_{xA})\nonumber \\&\quad \times \left[ e^{ i\mathbf{p }_{xA} \cdot \mathbf{r }_{xA} }\,\frac{ {\partial W_{-\eta ^{bs}_{xA}, l_{B}+1/2}(2\,\kappa _{xA}\,r_{xA})/r_{xA} } }{{\partial {r_{xA}}}}\right. \nonumber \\&\quad \left. - \frac{ W_{-\eta ^{bs}_{xA}, l_{B}+1/2 }(2\,\kappa _{xA}\,r_{xA}) }{r_{xA}} \frac{{\partial e^{ i\mathbf{p }_{xA} \cdot \mathbf{r }_{xA} }}}{{\partial {r_{xA}}}}\right] , \end{aligned}$$
(D.4)

where

$$\begin{aligned}&\mathbf{p }_{xA}= {\mathbf{p }_{aA}} - \frac{{{m_A}}}{{{m_F}}}{\mathbf{p }_{sF}} , \qquad \nonumber \\&\mathbf{p }_{sx}={\mathbf{p }_{sF}} - \frac{{{m_s}}}{{{m_a}}}\,{\mathbf{p }_{aA}}. \end{aligned}$$
(D.5)

Taking into account the fact that \(r_{xA} = R_{ch}\) is larger than the nuclear interaction radius we replace the relative momentum \(\mathbf{p }_{xA}\) with the momentum \(\mathbf{q }_{xA}= {\mathbf{k }_{aA}} - \frac{{{m_A}}}{{{m_F}}}{\mathbf{k }_{sF}}\), which is expressed in terms of on-the-energy-shell momenta \({\mathbf{k }_{aA}}\) and \({\mathbf{k }_{sF}}\). However, the \(x-A\) relative momentum \(\mathbf{q }_{xA}\) is off-the-energy-shell because the transferred particle x is virtual. Returning now to the coordinate-space representation for \({{\mathcal {M}}}_{S}^{DW(prior)}\) we get

$$\begin{aligned}&{{\mathcal {M}}}_{S}^{DW(prior)} = \frac{{R_{ch}^2}}{{2{\mu _{xA}}}}\, C_{xA\, \, {l_{B}}\,{j_{B}\,J_{B} }\,}^B\,\nonumber \\&\quad \times \sum \limits _{ m_{l_{B}}\,\,m_{j_{B}}\,M_{x}}\,\langle J_{A}\, M_{A}\,\, j_{B}\, m_{j_{B}}| J_{B}\,M_{B}\rangle \int d{\Omega _{\mathbf{r }_{xA}}}\,Y_{l_{B}m_{l_{B}} }^{*}({{\hat{\mathbf{r }}}}_{xA}) \nonumber \\&\quad \times \langle J_{x}\,M_{x}\,\,l_{B}\,m_{l_{B}}|j_{B}\,m_{j_{B}}\rangle \nonumber \\&\quad \times \langle J_{s}\,M_{s}\,\,J_{x}\,M_{x}| J_{a}\,M_{a}\rangle {M}^{DWZR(prior)} \nonumber \\&\quad \times \left[ e^{ - i\mathbf{q }_{xA} \cdot \mathbf{r }_{xA} }\,\frac{ {\partial W_{-\eta ^{bs}_{xA}, l_{B}+1/2}(2\,\kappa _{xA}\,r_{xA})/r_{xA} } }{{\partial {r_{xA}}}}\right. \nonumber \\&\quad \left. - \frac{ W_{-\eta ^{bs}_{xA}, l_{B}+1/2 }(2\,\kappa _{xA}\,r_{xA}) }{r_{xA}}\frac{{\partial e^{ - i\mathbf{q }_{xA} \cdot \mathbf{r }_{xA} }}}{{\partial {r_{xA}}}}\right] . \end{aligned}$$
(D.6)

Here,

$$\begin{aligned} {M}^{DWZR(prior)}= \int {d{\mathbf{r }_{sx}}}\, \chi _{ - {\mathbf{k }_{(sF)}}}^{C( + )}({\mathbf{r }_{sx}})\,{\varphi _{a}}({\mathbf{r }_{sx}}) \chi _{\mathbf{k _\mathbf{aA }}}^{C( + )}\left( \frac{{{m_s}}}{{{m_a}}}\mathbf{r }_{sx}\right) \end{aligned}$$
(D.7)

is the DWBA amplitude, which does not depend on the overlap function and \(V_{xA}\) potential. This equation looks like the zero-range DWBA (ZRDWBA). However, in contrast to the standard zero-range approximation, Eq. (D.7) can be used for arbitrary value of the orbital momentum of the bound state (xA).

Integrating in Eq. (D.6) over \(\,\Omega _{\mathbf{r }_{xA}}\,\) we arrive at the surface term of the DWBA reaction amplitude singled out using the surface-integral formalism:

$$\begin{aligned}&{{\mathcal {M}}}_{S}^{DW(prior)} = \frac{2\,\pi }{\mu _{xA}}\,i^{-l_{B}}\,C_{xA\,l_{B}\,{j_{B}\,J_{B}}\,}^B\,{W}_{-\eta ^{bs}_{xA}, l_{B}+1/2}\nonumber \\&\quad \times (2\,\kappa _{xA}\,R_{ch}) \,j_{{l_{B}}}({q_{xA}}{R_{ch}})\, {{\mathbb {W}}}_{l_{xA}}\,{Y_{{l_{B}},{m_{{l_{B}}}}}}({\widehat{\mathbf{q}}_{xA}})\, \nonumber \\&\quad \times \sum \limits _{m_{l_{B}}\,\,m_{j_{B}}\,M_{x}}\,\langle J_{A}\, M_{A}\,\, j_{B}\, m_{j_{B}}| J_{B}\,M_{B}\rangle \,\langle J_{x}\,M_{x}\,\,l_{B}\,m_{l_{B}}|j_{B}\,m_{j_{B}}\rangle \nonumber \\&\quad \times \langle J_{s}\,M_{s}\,\,J_{x}\,M_{x}| J_{a}\,M_{a}\rangle \,{M}^{DWZR(prior)}. \end{aligned}$$
(D.8)

The off-shell factor \({{\mathbb {W}}}_{l_{xA}}\) is written as

$$\begin{aligned}&{{\mathbb {W}}}_{l_{xA}} = \left[ \Big (B_{xA} -1 \Big ) - R_{ch}\,\frac{\partial {\ln \,[j_{l_{xA}}({q_{xA}}{r_{xA}})]}}{{\partial {r_{xA}}}}\right] {\Big |_{{r_{xA}} = {R_{ch}}}}, \end{aligned}$$
(D.9)

where \(B_{xA}\) is defined in Eq. (197) and \(j_{l_{xA}}\) is the spherical Bessel function.

Equation (D.8) is a very important result. It contains the off-shell factor \({{\mathbb {W}}}_{l_{xA}}\) reflecting the virtual character of the transferred particle x. It also contains the boundary conditions expressed in terms of the logarithmic derivatives and generalizes the R-matrix method for binary reactions. Thus in the surface-integral formalism the dominant contribution to the DWBA amplitude of the transfer reaction in the prior form is given by the sum of the dominant surface and external terms and the final expression for the prior-form DWBA amplitude, which can be used for the analysis of the transfer reaction.

Appendix E: Notations and abbreviations

Here we present some important notations.

  • \(m_{i}\): mass of particle i.

  • \(\mu _{ij}\): reduced mass of particles i and j.

  • \(\mathbf{k }_{ij}\) ( \(\mathbf{p }_{ij}\)): on-shell (off-shell) relative momentum of particles i and j.

  • \(\kappa _{ij}\): (ij) bound-state wave number.

  • \(\lambda _{N}\): nucleon Compton wave length.

  • \(m_{au}\): atomic mass unit.

  • \(\alpha \): fine structure constant.

  • \(E_{ij}\): relative kinetic energy of particles i and j.

  • \(\varepsilon _{ij}\): binding energy of the bound state (ij).

  • \(I_{aA}^{B}\): overlap function of the bound-state wave functions of \(B,\,a\) and A.

  • \(\varphi _{l}(k,r),\,\) \(\,\varphi _{l}^{N}(k,r)\,\) and \(\,\varphi _{l}^{C}(k,r)\): regular at the origin nuclear+Coulomb, pure nuclear and pure Coulomb reduced radial scattering wave functions, respectively.

  • \({{\tilde{\varphi }}}_{l}^{C}(k,r)\): Coulomb-renormalized reduced regular Coulomb radial scattering wave function.

  • \(f^{(\pm )}_{l}(k,r),\,\) \(\,f^{N(\pm )}_{l}(k,r)\) and \(f^{C(\pm )}_{l}(k,r)\): singular at the origin nuclear+Coulomb, pure nuclear and pure Coulomb scattering solutions (Jost solutions), respectively.

  • \( {{\mathcal {F}}}_{l}^{(\pm )}(k),\,\) \(\, {{\mathcal {F}}}_{l}^{N(\pm )}(k)\,\) and \( \,{{\mathcal {F}}}_{l}^{C(\pm )}(k)\): nuclear + Coulomb, pure nuclear and pure Coulomb Jost functions, respectively.

  • \(f^{(\pm )}_{l}(k),\,\) \(\,f^{N(\pm )}_{l}(k)\) and \(f^{C(\pm )}_{l}(k)\): normalized nuclear+Coulomb, pure nuclear and Coulomb Jost functions, respectively.

  • \(W_{\lambda ,\nu }\): Whittaker function.

  • \({{\mathbb {S}}},\,\) \(\,{{\mathbb {S}}}^{N},\,\) and \(\,{{\mathbb {S}}}^{C} \,\): nuclear + Coulomb, pure nuclear and pure Coulomb scattering S-matrices, respectively.

  • \(A_{l}\): residue of the S-matrix in the bound-state pole.

  • \(G_{l}\): nuclear vertex constant.

  • \(C_{l}\): asymptotic normalization coefficient.

  • \({{\tilde{C}}}_{l}\): Coulomb-renormalized asymptotic normalization coefficient.

  • \( {\mathtt S}\): spectroscopic factor (SF).

  • S: astrophysical S-factor.

  • \({{\mathcal {M}}} \): reaction amplitude.

  • \({{\mathcal {T}}}_{l},\,\) \(\,{{\mathcal {T}}}_{l}^{N} \,\) and \(\,{{\mathcal {T}}}_{l}^{C},\,\): nuclear+Coulomb, pure nuclear and pure Coulomb scattering amplitudes, respectively.

  • \({{\mathcal {T}}}_{l}^{CN} \): Coulomb-modified nuclear scattering amplitude.

  • \(\mathcal{{{\tilde{T}}}}_{l}^{CN} \): Coulomb-renormalized, Coulomb-modified nuclear scattering amplitude.

  • \(K_{l}\): effective-range function.

  • \({{\mathcal {C}}}_{l} \): Coulomb penetrability factor.

  • \(P_{l}\): penetrability factor in R-matrix.

  • \(a_{B}\): Bohr radius.

  • \({{\mathcal {W}}}\) (\({{\mathcal {W}}}^{C}\)): Wronskian (Coulomb Wronskian).

  • \({{\mathcal {L}}} \): ratio of mirror ANCs in terms of Wronskians.

  • \(B_{ij}\): logarithmic boundary condition.

  • \({{\mathbb {W}}}_{l}\): off-shell factor.

  • ANC: asymptotic normalization coefficient.

  • SF: spectroscopic factor.

  • DWBA: distorted-wave Born approximation.

  • ADWA: adiabatic distorted wave approximation.

  • CDCC: continuum-discretized coupled channels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedzhanov, A.M., Blokhintsev, L.D. Asymptotic normalization coefficients in nuclear reactions and nuclear astrophysics. Eur. Phys. J. A 58, 29 (2022). https://doi.org/10.1140/epja/s10050-021-00651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00651-0

Navigation