Skip to main content
Log in

Combined approach to studying authenticity markers following spatial, temporal and production practice trends in honey from Croatia

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The confirmation of honey authenticity is an ongoing challenge. We investigated new authenticity markers (13 macro and trace elements, total phenolic (TP) content, antioxidant capacity) in 62 unifloral and multifloral honeys from Croatia as loadings for principal component analysis (PCA), taking into account the spatial, temporal and production practice variation and combining them with traditional tools for authentication of the botanical origin (melissopalynological, sensory and physicochemical analyses). PCA as a chemometric tool was compliant with basic statistical testing results (Mann–Whitney U test) figuring Ba and Mn, and also pointed to TP, antioxidant capacity parameters, Ca, K and Mg (PC1) as useful markers for discriminating chestnut honey from other unifloral and multifloral honeys. The first PC discerned deciduous honeydew honey sample fairly from nectar honey samples. Although some elements showed regional, seasonal and production practice differences, PCA was not able to discriminate between all groups clearly. Our nutritional assessment based on a calculation of the contribution to the Dietary Reference Value pinpointed deciduous honeydew honey, savory and chestnut honey with the highest daily mineral intake relevance among seven honey types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Anklam E (1998) A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem 63:549–562. https://doi.org/10.1016/S0308-8146(98)00057-0

    Article  CAS  Google Scholar 

  2. Bogdanov S, Jurendic T, Sieber R, Gallmann P (2008) Honey for nutrition and health: a review. J Am Coll Nutr 27:677–689. https://doi.org/10.1080/07315724.2008.10719745

    Article  CAS  PubMed  Google Scholar 

  3. Pohl P (2009) Determination of metal content in honey by atomic absorption and emission spectrometries. Trend Anal Chem 28:117–128. https://doi.org/10.1016/j.trac.2008.09.015

    Article  CAS  Google Scholar 

  4. Council Directive 2001/110/EC of 20 December 2001 relating to honey. OJ L 010, 12/01/2002:47–52. http://data.europa.eu/eli/dir/2001/110/oj. Accessed 15 July 2020

  5. European Parliament resolution of 1 March 2018 on prospects and challenges for the EU apiculture sector (2017/2115(INI). OJ C 129, 5/4/2019:25–37. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018IP0057&from=EN. Accessed 8 March 2021

  6. Ministry of Agriculture, 2019, National Beekeeping Programme, 2020–2022 (in Croatian). Ministry of Agriculture, pp 1–37. https://poljoprivreda.gov.hr/UserDocsImages/dokumenti/poljoprivreda/pcelarstvo/Nacionalni%20p%C4%8Derlarski%20program%202020.-2022..pdf. Accessed 12 June 2020

  7. FAOSTAT, Food and Agriculture Organization of the United Nations Database, Livestock Primary. http://www.fao.org/faostat/en/#data/QL. Accessed 8 March 2021

  8. CBS (2018) Croatian Bureau of Statistics. Population estimate of Republic of Croatia, 2017. First release 7.1.3. Zagreb. https://www.dzs.hr/Hrv_Eng/publication/2018/07-01-03_01_2018.htm. Accessed 8 March 2021

  9. CBS (2019) Croatian Bureau of Statistics. Population estimate of Republic of Croatia, 2018. First release 7.1.3. Zagreb. https://www.dzs.hr/Hrv_Eng/publication/2019/07-01-03_01_2019.htm. Accessed 8 March 2021

  10. CBS (2020) Croatian Bureau of Statistics. Population estimate of Republic of Croatia, 2019. First release 7.1.3. Zagreb. https://www.dzs.hr/Hrv_Eng/publication/2020/07-01-03_01_2020.htm. Accessed 8 March 2021

  11. Glasnović M (2020) Assessment of consumer habits, attitudes and opinions about honey (in Croatian). Master's thesis, University of Zagreb, Faculty of Food Technology and Biotechnology. pp 1–66. https://zir.nsk.hr/islandora/object/pbf%3A3596/datastream/PDF/view. Accessed 7 March 2021

  12. Directive 2014/63/EU of the European Parliament and of the Council of 15 May 2014 amending Council Directive 2001/110/EC relating to honey. OJ L 164, 3/6/2014:1–5. http://data.europa.eu/eli/dir/2014/63/oj. Accessed 15 July 2020

  13. McDonald CM, Keeling SE, Brewer MJ, Hathaway SC (2018) Using chemical and DNA marker analysis to authenticate a high-value food, manuka honey. NPJ Sci Food 2:1–14. https://doi.org/10.1038/s41538-018-0016-6

    Article  Google Scholar 

  14. Zhou X, Taylor MP, Salouros H et al (2018) Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Sci Rep 8:14639. https://doi.org/10.1038/s41598-018-32764-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lazarević KB, Jovetić MS, Tešić ŽLJ (2017) Physicochemical parameters as a tool for the assessment of origin of honey. J AOAC Int 100:840–851. https://doi.org/10.5740/jaoacint.17-0143

    Article  CAS  PubMed  Google Scholar 

  16. Nečemer M, Košir IJ, Kump P, Kropf U, Jamnik M, Bertoncelj J, Ogrinc N, Golob T (2009) Application of total reflection X-ray spectrometry in combination with chemometric methods for determination of the botanical origin of Slovenian honey. J Agric Food Chem 57:4409–4414. https://doi.org/10.1021/jf900930b

    Article  CAS  PubMed  Google Scholar 

  17. Chudzinska M, Baralkiewicz D (2010) Estimation of honey authenticity by multielements characteristics using inductively coupled plasma-mass spectrometry (ICP-MS) combined with chemometrics. Food Chem Toxicol 48:284–290. https://doi.org/10.1016/j.fct.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  18. Kropf U, Korošec M, Bertoncelj J, Ogrinc N, Nečemer M, Kump P, Golob T (2010) Determination of the geographical origin of Slovenian black locust, lime and chestnut honey. Food Chem 121:839–846. https://doi.org/10.1016/j.foodchem.2009.12.094

    Article  CAS  Google Scholar 

  19. Escuredo O, Míguez M, Fernández-González M, Seijo MC (2013) Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138(2–3):851–856. https://doi.org/10.1016/j.foodchem.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  20. Fermo P, Beretta G, Facino MF, Gelmini F, Piazzalunga A (2013) Ionic profile of honey as a potential indicator of botanical origin and global environmental pollution. Environ Poll 178:173e181. https://doi.org/10.1016/j.envpol.2013.03.029

    Article  CAS  Google Scholar 

  21. Czipa N, Andrási D, Kovács B (2015) Determination of essential and toxic elements in Hungarian honeys. Food Chem 175:536–542. https://doi.org/10.1016/j.foodchem.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  22. Milojković Opsenica D, Lušić D, Tešić Ž (2015) Modern analytical techniques in the assessment of the authenticity of Serbian honey. Arh Hig Rada Toksikol 66:233–241. https://doi.org/10.1515/aiht-2015-66-2721

    Article  CAS  PubMed  Google Scholar 

  23. Oroian M, Amariei S, Leahu A, Gutt G (2015) Multi-element composition of honey as a suitable tool for its authenticity analysis. Pol J Food Nutr Sci 65:93–100. https://doi.org/10.1515/pjfns-2015-0018

    Article  CAS  Google Scholar 

  24. Uršulin-Trstenjak N, Levanić D, Primorac LJ, Bošnir J, Vahčić N, Šarić G (2015) Mineral profile of Croatian honey and differences due to its geographical origin. Czech J Food Sci 33(2):156–164. https://doi.org/10.17221/502/2014-CJFS

    Article  Google Scholar 

  25. Atanassova J, Pavlova D, Lazarova M, Yurukova L (2016) Characteristics of honey from serpentine area in the Eastern Rhodopes Mt. Bulgaria Biol Trace Elem Res 173:247–258. https://doi.org/10.1007/s12011-015-0616-9

    Article  CAS  PubMed  Google Scholar 

  26. Kováčik J, Grúz J, Biba O, Hedbavny J (2016) Content of metals and metabolites in honey originated from the vicinity of industrial town Košice (eastern Slovakia). Environ Sci Pollut Res 23:4531–4540. https://doi.org/10.1007/s11356-015-5627-8

    Article  CAS  Google Scholar 

  27. Jovetić MS, Redžepović AS, Nedić NM, Voj D, Đurđić SZ, Brčeski ID, Milojković-Opsenica DM (2018) Urban honey—the aspects of its safety. Arh Hig Rada Toksikol 69:264–274. https://doi.org/10.2478/aiht-2018-69-3126

    Article  CAS  PubMed  Google Scholar 

  28. Czipa N, Phillips CJC, Kovács B (2019) Composition of acacia honeys following processing, storage and adulteration. Food Sci Technol 56:1245–1255. https://doi.org/10.1007/s13197-019-03587-y

    Article  CAS  Google Scholar 

  29. Vasić V, Đurđić S, Tosti T, Radoičić A, Lušić D, Milojković-Opsenica D, Tešić Ž, Trifković J (2020) Two aspects of honeydew honey authenticity: application of advance analytical methods and chemometrics. Food Chem 305:125457. https://doi.org/10.1016/j.foodchem.2019.125457

    Article  CAS  PubMed  Google Scholar 

  30. Alves A, Ramos A, Gonçalves MM, Bernardo M, Mendes B (2013) Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. J Food Compost Anal 30:130–138. https://doi.org/10.1016/j.jfca.2013.02.009

    Article  CAS  Google Scholar 

  31. Tariba Lovaković B, Lazarus M, Brčić Karačonji I, Jurica K, Živković Semren T, Lušić D, Brajenović N, Pelaić Z, Pizent A (2018) Multi-elemental composition and antioxidant properties of strawberry tree (Arbutus unedo L.) honey from the coastal region of Croatia: risk-benefit analysis. J Trace Elem Med Biol 45:85–92. https://doi.org/10.1016/j.jtemb.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  32. Gašić UM, Natić MM, Mišić DM, Lušić DV, Milojković-Opsenica DM, Tešić TL, Lušić D (2015) Chemical markers for the authentication of unifloral Salvia officinalis L. honey. J Food Compos Anal 44:128–138. https://doi.org/10.1016/j.jfca.2015.08.008

    Article  CAS  Google Scholar 

  33. EFSA, European Food Safety Authority (2017) Dietary reference values for nutrients: Summary report. EFSA supporting publication e15121:44–47. https://doi.org/10.2903/sp.efsa.2017.e15121 (Accessed 5 September 2020)

    Article  Google Scholar 

  34. EFSA Nda Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens), Turck D, Castenmiller J, de Henauw S, Hirsch-Ernst K-I, Kearney J, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aggett P, Fairweather-Tait S, Martin A, Przyrembel H, Ciccolallo L, de Sesmaisons-Lecarré A, Martinez SV, Martino L and Naska A (2019) Scientific opinion on the dietary reference values for sodium. EFSA J 17(e05778):1–191. https://doi.org/10.2903/j.efsa.2019.5778 (Accessed 5 September 2020)

    Article  Google Scholar 

  35. Lazarus M, Tariba Lovaković B, Orct T, Sekovanić A, Bilandžić N, Đokić M, Solomun Kolanović B, Varenina I, Jurič A, Denžić Lugomer M, Bubalo D (2021) Difference in pesticides, trace metal(loid)s and drug residues between certified organic and conventional honeys from Croatia. Chemosphere 266:128954. https://doi.org/10.1016/j.chemosphere.2020.128954

    Article  CAS  PubMed  Google Scholar 

  36. von der Ohe W, Persano Oddo L, Piana ML, Morlot M, Martin P (2004) Harmonized methods of melissopalynology. Apidologie 35:S18–S25. https://doi.org/10.1051/apido:2004050

    Article  Google Scholar 

  37. Piana M, Persano Oddo L, Bentabol A, Bruneau E, Bogdanov S, Guyot Declerck C (2004) Sensory analysis applied to honey: state of the art. Apidologie 35(Suppl. 1):S26–S37. https://doi.org/10.1051/apido:2004048

    Article  Google Scholar 

  38. AOAC International (2005) Official methods of analysis of AOAC INTERNATIONAL, 18th edn. AOAC INTERNATIONAL, Gaithersburg

    Google Scholar 

  39. IHC, International Honey Commission (2009) Harmonized methods of the International honey commission, 1–63. https://www.ihc-platform.net/ihcmethods2009.pdf. Accessed 4 June 2020

  40. Beretta G, Granata P, Ferrero M, Orioli M, Maffei Facino R (2005) Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal Chim Acta 533:185–191. https://doi.org/10.1016/j.aca.2004.11.010

    Article  CAS  Google Scholar 

  41. Tuberoso C, Boban M, Bifulco E, Budimir D, Pirisi F (2013) Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem 140:686–691. https://doi.org/10.1016/j.foodchem.2012.09.071

    Article  CAS  PubMed  Google Scholar 

  42. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  43. CFA, Croatian Food Agency (2015) Znanstveno izvješće o određivanju granica za poduzimanje mjera za olovo i kadmij u medu, mesu divljači i kunića (određivanje najvećih dopuštenih količina olova i kadmija u medu, mesu divljači i kunića) (in Croatian), Hrvatska agencija za hranu.

  44. Solayman M, Islam MA, Paul S, Ali Y, Khalil MI, Alam N, Gan SH (2016) Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review. Compr Rev Food Sci F 15:219–233. https://doi.org/10.1111/1541-4337.12182

    Article  CAS  Google Scholar 

  45. Mazinanian N, Herting G, Odnevall Wallinder I, Hedberg Y (2016) Metal release and corrosion resistance of different stainless steel grades in simulated food contact. Corrosion 72:775–790. https://doi.org/10.5006/2057

    Article  CAS  Google Scholar 

  46. Gheldof N, Wang X-H, Engeseth NJ (2002) Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem 50:5870–5877. https://doi.org/10.1021/jf0256135

    Article  CAS  PubMed  Google Scholar 

  47. Pauliuc D, Dranca F, Oroian M (2020) Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 9:306. https://doi.org/10.3390/foods9030306

    Article  CAS  PubMed Central  Google Scholar 

  48. Sant’Ana LDO, Sousa JPLM, Salgueiro FB, Lorenzon MCA, Castro RN, (2012) Characterization of monofloral honeys with multivariate analysis of their chemical profile and antioxidant activity. J Food Sci 71(1):C135–C140. https://doi.org/10.1111/j.1750-3841.2011.02490.x

    Article  CAS  Google Scholar 

  49. Li MS, Luo YP, Su ZY (2007) Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi South China. Environ Pollut 147(1):168–75. https://doi.org/10.1016/j.envpol.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  50. Halamić J, Miko S (2009) Geochemical atlas of the Republic of Croatia. Croatian geological survey, Zagreb

    Google Scholar 

  51. Smith KA (1971) The comparative uptake and translocation by plants of calcium, strontium, barium and radium. I. Bertholletia excelsa (Brazil nut tree). Plant Soil 34:369–379

    Article  CAS  Google Scholar 

  52. WHO (1990) Barium. Environmental Health Criteria 107. World Health Organisation, International Programme on Chemical Safety, Geneva. http://www.inchem.org/documents/ehc/ehc/ehc107.htm. Accessed 12 March 2021

  53. Lasić D, Bubalo D, Bošnir J, Šabarić J, Konjačić M, Dražić M, Racz A (2018) Influence of the botanical and geographical origin on the mineral composition of honey. Agric Conspec Sci 83:335–343

    Google Scholar 

  54. Meli MA, Fagiolino I, Desideri D, Roselli C (2018) Essential and toxic elements in honeys consumed in Italy. J Toxicol Environ Health A 81:1123–1134. https://doi.org/10.1080/15287394.2018.1520160

    Article  CAS  PubMed  Google Scholar 

  55. Bilandžić N, Sedak M, Đokić M, Gross Bošković A, Florijančić T, Bošković I, Kovačić M, Puškadija Z, Hruškar M (2019) Element content in ten Croatian honey types from different geographical regions during three seasons. J Food Comp Anal 84:103305. https://doi.org/10.1016/j.jfca.2019.103305

    Article  CAS  Google Scholar 

  56. ATSDR, Agency for Toxic Substances and Disease Registry (2012) Toxicological profile for Vanadium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/ToxProfiles/tp58.pdf. Accessed 10 June 2020

  57. Quinto M, Miedico O, Spadaccino G, Paglia G, Mangiacotti M, Li D, Centonze D, Chiaravalle AE (2016) Characterization, chemometric evaluation, and human health-related aspects of essential and toxic elements in Italian honey samples by inductively coupled plasma mass spectrometry. Environ Sci Pollut Res Int 23:25374–25384. https://doi.org/10.1007/s11356-016-7662-5

    Article  CAS  PubMed  Google Scholar 

  58. Bogdanov S, Haldimann M, Luginbühl W, Gallmann P (2007) Minerals in honey: environmental, geographical and botanical aspects. J Apic Res 46:269–275. https://doi.org/10.1080/00218839.2007.11101407

    Article  CAS  Google Scholar 

  59. El-KA T, Manosur HM, Shawer MB (2010) The relationship between comb age and the amounts of mineral elements in honey and wax. J Apic Res 49:202–207. https://doi.org/10.3896/IBRA.1.49.2.10

    Article  CAS  Google Scholar 

  60. Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9:269–298. https://doi.org/10.1139/a01-012

    Article  CAS  Google Scholar 

  61. Conti ME, Stripeikis J, Campanella L, Cucina D, Tudino MB (2007) Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters. Chem Cent J 1:14. https://doi.org/10.1186/1752-153X-1-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perna A, Simonetti A, Intaglietta I, Sofo A, Gambacorta E (2012) Metal content of southern Italy honey of different botanical origins and its correlation with polyphenol content and antioxidant activity. Int J Food Sci Tech 47:1909–1917. https://doi.org/10.1111/j.1365-2621.2012.03050.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank local beekeepers for donating honey samples and Dr Zdenko Franić for collecting samples of chestnut honey from the Banovina region (Banski med). We also wish to thank Mr Makso Herman for language editing.

Funding

Some chemical analyses carried out in this study were financially supported by the Ministry of Science and Education of the Republic of Croatia through Institutional Funding made available to the Institute for Medical Research and Occupational Health.

Author information

Authors and Affiliations

Authors

Contributions

ML: Conceptualization, Formal analysis, Investigation, Resources, Writing—Original Draft, Writing—Review & Editing, Visualization, Supervision; BTL: Resources, Validation, Formal analysis, Writing—Review & Editing; AS: Methodology, Validation, Formal analysis; TO: Methodology, Validation, Formal analysis; AJ: Validation, Formal analysis, Investigation; SP: Methodology, Formal analysis, Visualization; MDL: Methodology, Validation, Formal analysis; DB: Methodology, Formal analysis, Writing—Review & Editing.

Corresponding author

Correspondence to Blanka Tariba Lovaković.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarus, M., Tariba Lovaković, B., Sekovanić, A. et al. Combined approach to studying authenticity markers following spatial, temporal and production practice trends in honey from Croatia. Eur Food Res Technol 247, 1511–1523 (2021). https://doi.org/10.1007/s00217-021-03728-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03728-8

Keywords

Navigation