Skip to main content

Philippine Traditional Alcoholic Beverages: A Germinal Study

  • Living reference work entry
  • First Online:
Natural Products in Beverages

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 45 Accesses

Abstract

Tapuey (rice wine), basi (sugarcane wine), tuba (palm wine), and lambanog (distilled liquor from tuba) are traditional alcoholic beverages of the Philippines that are intrinsically linked to the economic, social, and cultural life of the Filipinos. Despite their existence that predates the Spanish colonization that happened in the 1600s, at present, there are very minimal scientific investigations devoted to these traditional beverages. This work is a nascent attempt to consolidate existing studies on these beverages, albeit limited, with the aim of introducing these to an international audience and providing a scientific understanding for these beverages. The chapter briefly describes how these traditional alcoholic drinks are implicated in Philippine culture. A general description of each traditional drink is provided. The physicochemical characteristics specific to each beverage as well as the attributes conferred by naturally occurring compounds present in these beverages are presented. The production process of each beverage is outlined, highlighting peculiarities in methods of production. The chapter also presents the problems and challenges that beset the traditional beverage industry of the Philippines, and in the end, compelling grounds are asserted to justify the necessity for more empirical studies on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CALABARZON:

Cavite, Laguna, Batangas, Rizal, and Quezon

CAR:

Cordillera Autonomous Region

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

GC-MS:

Gas chromatography-mass spectrometry

IP :

Indigenous people

TRS:

Total reducing sugars

TSS:

Total suspended solids

TTA:

Total titratable acidity

VOC:

Volatile organic compound

References

  1. Omamalin JS (2022) “Tagay ta, Bai!”: the social dynamics of Filipino social drinking. Philipp Soc Sci J 5:9–20

    Article  Google Scholar 

  2. Piscos JLC (2020) Drinking among early Visayans (Pintados) in achieving positive peace. Bedan Res J 5:214–234

    Article  Google Scholar 

  3. Scott HW (1995) Barangay: sixteenth-century Philippine culture and society. Ateneo De Manila University Press, Quezon City, Manila

    Google Scholar 

  4. Ray RC, El Sheikha AF, Kumar RS (2014) Oriental fermented functional (probiotic) foods. In: Ray RC, Montet D (eds) Microorganisms and fermentation of traditional foods. CRC, New York

    Chapter  Google Scholar 

  5. Conklin HC (1980) Ethnographic atlas of Ifugao: a study of environment, culture, and society in northern Luzon. New Haven Yale University Press, Connecticut

    Google Scholar 

  6. Gico ET (2015) Indigenous rice making in central Panay, Philippines. Patubas 10:49–73

    Google Scholar 

  7. Antonio JL, Ancheta CF (2014) Revisiting the Basi revolt of 1807: its historical and axiological relevance. Paper presented at the DLSU Research Congress, De La Salle University, Manila, Philippines, 6–8 March 2014

    Google Scholar 

  8. Magpali M (2018) The symbolic elements in the Ilocano marriage rituals in Tawid. (The Heritage) News Magazine

    Google Scholar 

  9. Tugo NN (2010) “Bugabug ang Dagat” The local life of a fishing community in the Philippines. Dissertation, Cardiff University, Wales

    Google Scholar 

  10. National Nutrition Council (2016) Cordillera region profile. http://www.nnc.gov.ph/regional-offices/cordillera-administrative-region/60-region-car-profile

  11. Sanchez PC (2008) Philippine fermented foods: principles and technology. University of The Philippines Press, Quezon City

    Google Scholar 

  12. Taninura W, Sanchez P, Kozaki M (1977) The fermented food in the Philippines I. Tapuy (rice wine). J Agric Sci 22:118–134

    Google Scholar 

  13. Isogai A, Utsunomiya H, Kanda R, Iwata H (2005) Changes in the aroma compounds of sake during aging. J Agric Food Chem 53:4118–4123

    Article  CAS  PubMed  Google Scholar 

  14. Hammes WP, Brandt MJ, Francis KL, Rosenheim J, Seitter MFH, Vogelmann SA (2005) Microbial ecology of cereal fermentations. Trends Food Sci Technol 16:4–11

    Article  CAS  Google Scholar 

  15. Sugimoto M, Koseki T, Hirayama A, Abe S, Sano T, Tomita M, Soga T (2010) Correlation between sensory evaluation scores of Japanese sake and metabolome profiles. J Agric Food Chem 58:374–383

    Article  CAS  PubMed  Google Scholar 

  16. Mimura N, Isogai A, Iwashita K, Bamba T, Fukusaki E (2014) Gas chromatography/mass spectrometry based component profiling and quality prediction for Japanese sake. J Biosci Bioeng 118:406–414

    Article  CAS  PubMed  Google Scholar 

  17. Jung H, Lee SJ, Lim JH, Kim BK, Park KJ (2014) Chemical and sensory profiles of makgeolli, Korean commercial rice wine, from descriptive, chemical, and volatile compound analyses. Food Chem 152:624–632

    Article  CAS  PubMed  Google Scholar 

  18. Kang BS, Lee JE, Park HJ (2014) Electronic tongue-based discrimination of Korean rice wines (makgeolli) including prediction of sensory evaluation and instrumental measurements. Food Chem 151:317–323

    Article  CAS  PubMed  Google Scholar 

  19. Kim YS, Kim YS (2015) Biometrics analysis and evaluation on Korean makgeolli using brainwaves and taste biological sensor system. Biomed Res Int:918631

    Google Scholar 

  20. Luo T, Fan W, Xu Y (2008) Characterization of volatile and semi-volatile compounds in Chinese rice wines by headspace solid phase microextraction followed by gas chromatography-mass spectrometry. J Inst Brew 114:172–179

    Article  CAS  Google Scholar 

  21. Tian S, Zeng W, Fang F, Zhou J, Du G (2022) The microbiome of Chinese rice wine (Huangjiu). Curr Res Food Sci 5:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chuenchomrat P, Assavanig A, Lertsiri S (2008) Volatile flavor compounds analysis of solid state fermented Thai rice wine (Ou). ScienceAsia 34:199–206

    Article  CAS  Google Scholar 

  23. Sanchez PC, Juliano BO, Laude VT, Perez CM (1988) Nonwaxy rice for tapuy (rice wine) production. Cereal Chem 65:240–243

    Google Scholar 

  24. Ablaza JC, Valerio AM, Mamucot HF, Bandonill EH, Romero MV (2008) Utilization of pure molds and yeast in the preparation of tapuy (rice wine). http://agris.fao.org/agris-search/search.do?recordID=PH2009000403. Accessed 4 Dec 2022

  25. Dizon EI (2009) Standardization of starter culture for rice wine (tapuy) processing. http://agris.fao.org/agris-search/search.do?recordID=PH2010000369. Accessed 4 Dec 2022

  26. Sanchez PC, Ramirez TJ, Velasco AC (1985) Evaluation of the fermentation efficiency and of traditional bubod for rice wine fermentation. Philipp Agri Sci 68:483–491

    Google Scholar 

  27. Kozaki M, Uchimura T (1990) Microorganisms in Chinese starter “Bubod” and rice wine “tapuy” in The Philippines microorganisms in Chinese starters from Asia (part 1). J Brew Soc Jpn 85:818–824

    Article  Google Scholar 

  28. Ablang CA, Alvar KN, Samson KAT, Santiago LA (2017) Molecular identification of a native wine yeast from bubod used in tapuy fermentation. Acta Manilana 65:47–54

    Article  Google Scholar 

  29. Nabua, WC, Tugahan VA, Malate RF (2013) Production, processing and marketing of pangase wine: A Subanen identity. Paper presented at the 48th Biennial Convention Philippine Agricultural Economics and Development Association, Musuan, Bukidnon Philippines, 20-21 Oct 2013

    Google Scholar 

  30. Yu KLB (2017) Profiling of volatile organic compounds and other physicochemical properties of philippine rice wine (tapuy). Thesis, University of the Philippines Diliman

    Google Scholar 

  31. Dela JGL, Medina PMB (2021) Philippine rice wine (Tapuy) made from Ballatinao black rice and traditional starter culture (Bubod) showed high alcohol content, total phenolic content, and antioxidant activity. Food Sci Technol 42:1–8

    Google Scholar 

  32. Hipol RLB, Alma-in AB (2018) Antioxidant potentials of indigenously produced Benguet tapuy (rice wine). Int Food Res J 25:1968–1976

    CAS  Google Scholar 

  33. du Toit M, Pretorius IS (2000) Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal – a review. S Afr J Enol Vitic 21:74–96

    Google Scholar 

  34. Shen F, Ying Y, Li B, Zheng Y, Hu J (2011) Prediction of sugars and acids in Chinese rice wine by mid-infrared spectroscopy. Food Res Int 44:1521–1527

    Article  CAS  Google Scholar 

  35. Jackson RS (2014) Wine science: principles and applications. Elsevier

    Google Scholar 

  36. Sanico TC, Medina PMB (2022) Metagenomic characterization of the culturable bacterial community structure of tapuy, a Philippine indigenous rice wine, reveals significant presence of potential probiotic bacteria. Acta Med Philipp 56:1–12

    Google Scholar 

  37. Gregorio CGC, Yu KLB, Singson FVT, Alas CAR, Balbuena JW (2020) Towards the establishment of baseline scientific information on the volatile organic compounds (VOCs) of Philippine traditional alcoholic beverages. Philipp J Sci 149:869–885

    Article  Google Scholar 

  38. Chen S, Xu Y, Qian MC (2013) Aroma characterization of Chinese rice wine by gas chromatography-olfactometry, chemical quantitative analysis, and aroma reconstitution. J Agric Food Chem 61:11295–11302

    Article  CAS  PubMed  Google Scholar 

  39. Snow R (1983) Genetic improvement of wine yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics: fundamental and applied aspects. Springer, New York

    Google Scholar 

  40. Shiroma S, Jayakody LN, Horie K, Okamoto K, Kitagaki H (2014) Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Appl Environ Microbiol 80:1002–1012

    Article  PubMed  PubMed Central  Google Scholar 

  41. Apostolopoulou AA, Flouros AI, Demertzis PG, Akrida-Demertzi K (2005) Differences in concentration of principal volatile constituents in traditional Greek distillates. Food Control 16:157–164

    Article  CAS  Google Scholar 

  42. Amatayakul T, Somsap N, Rotsatchakul P (2012) Study of volatile compounds in Thai rice wine (sato) produced from wheat. KKU Res J 17:939–949

    Google Scholar 

  43. Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180

    Article  CAS  PubMed  Google Scholar 

  44. Scanes KT, Hohmann S, Priori BA (1998) Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: a review. S Afr Enol Vitic 19:17–24

    CAS  Google Scholar 

  45. Omori T, Takashita H, Omori N, Shimoda M (1995) High glycerol producing amino acid analogue-resistant Saccharomyces cerevisiae mutant. J Ferm Bio Eng 80:218–222. In Scanes KT, Hohmann S, Priori BA (1998) Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: a review. S Afr enol. Vitic 19:17–24

    Article  CAS  Google Scholar 

  46. The Dow Chemical Company (2015) Product safety assessment: methyl acrylate. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_096d/0901b8038096db2d.pdf?filepath=productsafety/pdfs/noreg/233-00303.pdf&fromPage=GetDoc. Accessed 5 Jan 2023

  47. Sakai H, Caldo A (1985) Microbiological and chemical changes in tapuy fermentation. J Ferment Technol 63:11–16

    CAS  Google Scholar 

  48. Aidoo KE, Nout MJR (2010) Functional yeasts and molds in fermented foods and beverages. In: Tamang JP, Kailasapathy K (eds) Fermented foods and beverages of the world. CRC

    Google Scholar 

  49. Delfini C, Formica JV (2001) Wine microbiology: science and technology. Marcel Dekker

    Book  Google Scholar 

  50. Kettem V(2013) Documentation on sugarcane wine (fvayash) processing in Sadanga, Mountain Province. Thesis, Benguet State University

    Google Scholar 

  51. Alunday-Balocnit D (2020) Physicochemical properties of Macaranga (gamu) used in Kalinga basi (bayas) production. Int J Eng Literat Soc Sci 5:2436–2442

    Google Scholar 

  52. Faria JB (2012) Sugarcane spirits: cachaca and rum production and sensory properties – alcoholic beverages sensory evaluation and consumer research. Woodhead Publishing

    Google Scholar 

  53. Food and Agriculture Organization of the United Nations (2016) Products of yeast fermentation. Retrieved from http://www.fao.org/docrep/x0560e/x0560e09.ht

  54. Luzietoso N, Bom Khonde PC, Bazabana JJM (2000) Strengthening traditional technical knowledge: the sugar cane wine example. Indigenous Knowledge (IK) notes 24 © World Bank, Washington, DC. http://hdl.handle.net/10986/10814. Accessed 25 Apr 2023

  55. Menezes EGT, Alves JGL, Valeriano C, Guimaraes IC (2013) Physico-chemical and sensorial evaluation of sugarcane spirits produced using distillation residue. Braz Arch Biol Technol Int J 56:121–126

    Article  CAS  Google Scholar 

  56. Aime-Jhustelin AM (2013) Chemical composition of a standard sugar cane wine of Saccharum officinarum Linn from Woleu-Ntem, Gabon. J Agri Sustain 3:216–222

    Google Scholar 

  57. Duke G (2010) Development of fruit flavored wine from sugarcane juice using different types of yeasts. Project Report, University of Nairobi

    Google Scholar 

  58. Jhustelin AMA (2014) Origin of some chemical compounds of a sugarcane wine of Saccharum officinarum Linn from Centreville, Gabon. J Environ Sci Toxicol Food Technol 8:70–72

    Google Scholar 

  59. Wahome JN (2003) Microbiological and chemical characterisation of the traditional manufacture of muratina wine. Thesis, University of Nairobi

    Google Scholar 

  60. Kulkarni MK, Kininge PT, Ghasghase NV, Mathapati PR, Joshi SS (2011) Effect of additives on alcohol production and kinetic studies of S. cerevisiae for sugar cane wine production. Int J Adv Biotechnol Res 2:154–158

    CAS  Google Scholar 

  61. Espinoza YR, Lopez EL, Sanchez HH (2005) Characterization of wine-like beverage obtained from sugarcane juice. World J Microbiol Biotechnol 21:447–452

    Article  Google Scholar 

  62. Tzeng D, Chia Y, Tai C, Ou AS (2008) Investigation of chemical quality of sugarcane (Saccharum officinarum L.) wine during fermentation by Saccharomyces cerevisiae. J Food Qual 33:248–267

    Article  Google Scholar 

  63. Andres R (2013) Virgilio Gaudia has a unique way of producing basi and vinegar. Magazine Agriculture. https://www.agriculture.com.ph/2018/03/02/virgilio-gaudia-has-a-unique-way-of-producing-basi-and-vinegar/. Accessed 4 Dec 2022

  64. Sanchez PC (1981) Studies on the traditional sugarcane wine (basi) production in the Philippines. Philippine J Crop Sci 6:108–116

    Google Scholar 

  65. Alas CAR (2016) Determination of major and minor volatile organic compounds (VOCs) in basi (sugarcane wine) using headspace gas chromatography. Thesis, University of the Philippines Diliman

    Google Scholar 

  66. Tanimura W, Sanchez PC, Kosaki M (1977) The fermented food in the Philippines part (II): basi (sugarcane wine). J Agri Sci Tokyo Univ Agri 22:135–141

    Google Scholar 

  67. Pino JA, Perez JC, Roncal E (2019) Analysis of the volatile compounds in sugarcane juice wine using solid-phase microextraction techniques coupled with gas chromatography-mass spectrometry. Revista Cenic 50:2221–2442

    Google Scholar 

  68. Ebeler SE (2001) Analytical chemistry: unlocking the secrets of wine flavor. Food Rev Int 17:45–64

    Article  CAS  Google Scholar 

  69. Pacho AG (2015) Discovering tuba. University of the Philippines Press, Quezon City

    Google Scholar 

  70. Bassir O (1962) Observation of the fermentation of palm-wine. West African J Biol Chem 6:521

    Google Scholar 

  71. Flores-Gallegos AC, Vázquez-Vuelvas OF, López-López LL, Sainz-Galindo A, Ascacio-Valdes JA, Aguilar CN, Rodriguez-Herrera R (2019) 6 – Tuba, a fermented and refreshing beverage from coconut palm sap. In: Grumezescu AM, Holban AM (eds) Non-alcoholic beverages. Woodhead Publishing

    Google Scholar 

  72. Astudillo-Melgar F, Ochoa-Leyva A, Utrilla J, Huerta-Beristain G (2019) Bacterial diversity and population dynamics during the fermentation of palm wine from Guerrero Mexico. Front Microbiol 10:531

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jespersen L (2003) Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Res 3:191–200. In Stringini M, Comitini F, Taccari M, Ciani M (2009) yeast diversity during tapping and fermentation of palm wine from Cameroon. Food Microbiol 26:415–420

    Article  CAS  PubMed  Google Scholar 

  74. Bisi-Johnson MA, Adejuwon AO, Ajayi AO, Uaboi-Egbenni PO, Adefisoye MA (2011) Meddling with a cultural heritage: traces of salicylate in adulterated palm wine and health implications. Afr J Food Sci 5:536–540

    CAS  Google Scholar 

  75. Upadhyaya A, Sonawane SK (2023) Palmyrah palm and its products (Neera, Jaggery and candy)—a review on chemistry and technology. Appl Food Res 3:100256023

    Article  Google Scholar 

  76. Aidoo KE, Rob Nout MJ, Sarkar PK (2006) Occurrence and function of yeast in Asian indigenous fermented foods. FEMS Yeast Res 6:30–39

    Article  CAS  PubMed  Google Scholar 

  77. Chandrasekhar K, Sreevani S, Seshapani P, Promadhakumari J (2012) A review on palm wine. Int J Res Biol Sci 2:33–38

    Google Scholar 

  78. Atputharajah JD, Widanapathirana S, Samarajeewa U (1986) Microbiology and biochemistry of natural fermentation of coconut palm sap. Food Microbiol 3:273–280

    Article  Google Scholar 

  79. Chanthachum S, Beuchat LR (1997) Inhibitory effect of Liam (Cotylelobium lanceolatum Craih.) wood extract on gram-positive food borne pathogens and spoilage. Food Microbiol 14:603–608

    Article  Google Scholar 

  80. Amoa-Awua WK, Sampson E, Tano-Debrah K (2007) Growth of yeasts, lactic and acetic acid bacteria in palm wine during tapping and fermentation from felled oil palm (Elaeis guineensis) in Ghana. J Appl Microbiol 102:599–606

    Article  CAS  PubMed  Google Scholar 

  81. Kozaki M (1979) Fermented products in the Philippines. J Am Oil Chem Soc 56:381

    Article  Google Scholar 

  82. Fernandez WL, Alagad CK Jr, Casilang RR (1980) The alcohol content, total titratable acidity, pH and microbial count of tuba stored at four temperatures one week. Philipp Agric 63:303–308

    CAS  Google Scholar 

  83. Singson FVT (2017) Analytical determination and investigation of the major and minor volatile organic compound, heavy metal, and other physicochemical profile of Philippine coconut wine (tuba) for purposes of consumer safety, product quality, and marketability. Thesis, University of the Philippines Diliman

    Google Scholar 

  84. Fernandez WL, Carandang EV (1990) Organic acids in tuba and lambanog toddy. Philipp J Coconut Stud 15:21–22

    Google Scholar 

  85. Kozaki M, Sanchez PC (1974) Fermented foods and related microorganisms in Southeast Asia. Proc Jpn Assoc Mycotoxicol 2:1–10. In Sanchez PC (2008) Philippine fermented foods: principles and technology. University of The Philippines Press, Quezon City

    Google Scholar 

  86. Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996) Principles and practices of winemaking. Chapman & Hall, New York

    Book  Google Scholar 

  87. Jordão AM, Vilela A, Cosme F (2015) From sugar of grape to alcohol of wine: sensorial impact of alcohol in wine. Beverages 1:292–310

    Article  Google Scholar 

  88. Nur Aimi R, Abu Baka F, Dzulkifly MH (2012) Determination of volatile compounds in fresh and fermented Nipa sap (Nypa fruticans) using static headspace gas chromatography-mass spectrometry (GC-MS). Int Food Res J 20:369–376

    Google Scholar 

  89. Iwuoha CI, Eke OS (1996) Nigerian indigenous foods: their food traditional operation inherent problems, improvements and current status. Food Res Int 29:527–540

    Article  Google Scholar 

  90. Mavioga EM, Mullot JU, Frederic C, Huart B, Burnat P (2009) Sweet little Gabonese palm wine: a neglected alcohol. West Afr J Med 28:291–294

    CAS  PubMed  Google Scholar 

  91. Borse BB, Rao LJM, Ramalakshmia K, Raghavana V (2007) Chemical composition of volatiles from coconut sap (neera) and effect of processing. Food Chem 101:877–880

    Article  CAS  Google Scholar 

  92. Mingorance-Cazorla L, Clemente-Jimenez J, Martinez-Rodriquez S, Las Heras-Vazquez FJ, Rodriquez-Vico F (2003) Contribution of different natural yeasts to the aroma of two alcoholic beverages. World J Microbiol Biotechnol 19:297–304

    Article  CAS  Google Scholar 

  93. Cole VC, Noble AC (1997) Flavour chemistry and assessment. In: Lea AGH, Piggott JR (eds) Fermented beverage production. Blackie Academic & Professional, London

    Google Scholar 

  94. Silva RB, Freitas ER, Fuentes MFF, Lopes IRV, Lima RC, Bezerra RM (2008) Chemical composition and values of metabolizable energy of alternative feedstuffs determined with different birds. Acta Sci Anim Sci 30:269–275

    CAS  Google Scholar 

  95. Lasekan O, Buttner A, Christlbauer M (2007) Investigation of important odorants of palm wine (Elaeis guineensis). J Food Chem 105:15–23

    Article  CAS  Google Scholar 

  96. Zhang S, Petersen MA, Liu J, Toldam-Andersen TB (2015) Influence of pre-fermentation treatments on wine volatile and sensory profile of the new disease-tolerant cultivar solaris. Molecules 20:21609–21625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Robinson J (ed) (2006) The Oxford companion to wine, 3rd edn. Oxford University Press

    Google Scholar 

  98. Brandolini M, Guéguen L, Rousset P, Bertière M, Borie Y (2006) Nutrition discussion forum. Br J Nutr 95:654–656

    Article  CAS  Google Scholar 

  99. Lubbers S, Verret C, Voilley A (2001) The effect of glycerol on the perceived aroma of a model wine and a white wine. Food Sci Technol 34:262–265

    CAS  Google Scholar 

  100. Nykänen L, Suomalainen H (1983) Aroma of beer, wine, and distilled alcoholic beverages. D. Reidel, Dordrecht

    Google Scholar 

  101. Tantiado RG, Legario JL, Durana CC (2016) Assessment of Lactobacillus spp. Populations from tuba inoculated in different beverages. Int J Bio-Sci Bio-Technol 8:175–188

    Article  Google Scholar 

  102. Bejerano AGA (2022) Health benefits of the local coconut wine tuba. National Nutrition Council of the Philippines. https://www.nnc.gov.ph/regional-offices/mindanao/region-ix-zamboanga-peninsula/9142-health-benefits-of-the-local-coconut-wine-tuba. Accessed 18 Feb 2023

  103. Ascan TC, Zapata NR, Aesa H, Agapay-De Jesús S (2010) Status and strategic directions of the lambanog wine processing industry in Liliw, Laguna, Philippines. J ISSAAS 16:39–52

    Google Scholar 

  104. Ejim OS, Brands B, Rehm J, Lachenmeier DW (2007) Composition of surrogate alcohol from south-eastern Nigeria. Afr J Drug Alcohol Stud 6:65–74

    Google Scholar 

  105. Arellano-Plaza M, Paez-Lerma JB, Soto-Cruz NO, Kirchmayr MR, Gschaedler Mathis A (2022) Mezcal production in Mexico: between tradition and commercial exploitation. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2022.832532. Accessed 9 Apr 2023

  106. Vlontzos G, Niavis S, Duquenne MN (2014) Introduction on the market of tsipouro, a Greek traditional liquor of ouzo. Int J Euro-Mediterranean Stud 7:175–188

    Google Scholar 

  107. Soufleros EH, Mygdalia AS, Natskoulis P (2004) Characterization and safety evaluation of the traditional Greek fruit distillate “Mouro” by flavor compounds and mineral analysis. Food Chem 86:625–636

    Article  CAS  Google Scholar 

  108. Zheng XW, Han BZ (2016) Baiju, Chinese liquor: history, classification and manufacture. J Ethics Food 3:19–25

    Article  Google Scholar 

  109. Choi HU, Kim TW, Lee SJ (2022) Characterization of Korean distilled liquor, soju, using chemical, HS-SPME-GC-MS, and sensory descriptive analysis. Molecules 27:2429. https://doi.org/10.3390/molecules27082429. Accessed 15 Mar 2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Samarajeewa U, Adams MR, Robinson JM (2007) Major volatiles in Sri Lankan arrack, a palm wine distillate. Int J Food Sci Technol 16:437–444

    Article  Google Scholar 

  111. Zakpaa HD, Mak Mensah EE, Avio OA (2010) Effect of storage conditions on the shelf life of locally distilled liquor (Akpeteshie). Afr J Biotechnol 9:1499–1509

    Article  CAS  Google Scholar 

  112. Velasco R (2013) Gender responsive value chain analysis of the lambanog industry in The Philippines. Int J Bus Econ Dev 1:41–53

    Google Scholar 

  113. Zizumbo-Villarreal D, Colunga-GarcíaMarín P (2007) Early coconut distillation and the origins of mezcal and tequila spirits in west-Central Mexico. Genet Resour Crop Evol 55:493–510

    Article  Google Scholar 

  114. Carreon-Alvarez A, Suárez-Gómez A, Zurita F, Gómez-Salazar S, Soltero JFA, Barcena-Soto M, et al (2016) Assessment of physicochemical properties of tequila brands: authentication and quality. J Chem. https://downloads.hindawi.com/journals/jchem/2016/6254942.pdf. Accessed on 21 Feb 2023

  115. Balbuena JW (2017) Profiling of major and minor volatile organic compounds (VOCs) and metal content of Philippine lambanog. Thesis, University of the Philippines Diliman

    Google Scholar 

  116. Tanimura W, Sanchez PC (1978) The fermented food in The Philippines. IV: Lambanog and rhum. J Agri Sci Tokyo 22:327–330

    Google Scholar 

  117. Timbol M, Dizon E, Carpio E (2016) Effect of multiple distillation and head fraction removal on the volatile content of distillate from fermented coconut (Cocos Nucifera L.) water. Int Food Res J 19:691–696

    Google Scholar 

  118. Bibay DEE (2019) An analytical determination of the volatile organic compounds and metal content of Philippine coconut palm spirit (lambanog). Thesis, Universsity of the Philippines Diliman

    Google Scholar 

  119. Buglass AJ (2011) Handbook of alcoholic beverages: technical, analytical and nutritional aspects. Wiley, Chichester

    Book  Google Scholar 

  120. Sampaio A, Dragone G, Vilanova M, Oliveira JM, Teixeira JA, Mussatto SI (2013) Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT Food Sci Technol 54:557–563

    Article  CAS  Google Scholar 

  121. Dragone G, Mussatto SI, Oliveira JM, Teixeira JA (2009) Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem 112929:935

    Google Scholar 

  122. Silva ML, Macedo AC, Malcata FX (2000) Review: steam distilled spirit from fermented grape pomace. Food Sci Technol Int 6:285–300

    Article  CAS  Google Scholar 

  123. European Commission Employment, Social Affairs and Inclusion (2008) Recommendation from the scientific committee on occupational exposure limits for ethyl acetate. https://ec.europa.eu/social/BlobServlet?docId=6505&langId=en. Accessed 10 Dec 2022.

  124. Leonardos G, Kendall D, Barnard N (1969) Odor threshold determinations of 53 odorant chemicals. J Air Poll Cont Assoc 19:91–95

    Article  CAS  Google Scholar 

  125. Falqué E, Fernández E, Dubourdieu D (2001) Talanta 54:271–281

    Article  PubMed  Google Scholar 

  126. Cortés S, Salgado JM, Rodríguez N, Domínguez M (2010) The storage of grape marc: limiting factor in the quality of the distillate. Food Control 21:1545–1549

    Article  Google Scholar 

  127. Reddy LVA, Sudheer Kumar Y, Reddy OVS (2010) Analysis of volatile aroma constituents of wine produced from Indian mango (Mangifera indica L.) by GC-MS. Indian J Microbiol 50:183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. León-Rodríguez A, González-Hernández, de la Rosa APB, Escalante-Minakata P, López MG (2006) Characterization of volatile compounds of mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. J Agric Food Chem 54:1337–1341

    Article  PubMed  Google Scholar 

  129. Arellano M, Gschaedler A, Alcazar M (2012) Major volatile compounds analysis produced from mezcal fermentation using gas chromatography equipped headspace (GC–HS). Gas chromatography in plant science, wine technology, toxicology and some specific applications. https://cdn.intechopen.com/pdfs/30585/InTech-Major_volatile_compounds_analysis_produced_from_mezcal_fermentation_using_gas_chromatography_equipped_headspace_gc_hs_.pdf. Accessed 19 Mar 2023

  130. Shale K, Mukamugema J, Lues RJ, Venter P, Mokoena KK (2013) Characterisation of selected volatile organic compounds in Rwandan indigenous beer Urwagwa by dynamic headspace gas chromatography-mass spectrometry. Afr J Biotechnol 12:2990–2996

    CAS  Google Scholar 

  131. Santiago-Urbina JA, Ruíz-Terán F (2014) Microbiology and biochemistry of traditional palm wine produced around the world. Int Food Res J 21:1261–1269

    CAS  Google Scholar 

  132. Agaton SIG (2022) The tuba culture in Leyte, Philippines. Recoletos Multidiscipl Res J 10. https://doi.org/10.32871/rmrj2210.02.01. Accessed 4 Apr 2023

Download references

Acknowledgments

CGC Gregorio acknowledges the support of the University of the Philippines for an Outright Research Grant (412-0102-884-130-005). She extends her sincerest appreciation to her former students – FV Singson, KL Yu, JW Balbuena, CA Alas, and DE Bibay – for their valuable contribution to this seminal work on Philippine traditional alcoholic beverages and to her dear colleagues and friends who provided support in many ways than one, P Torres (+), LdlCoo, E Santos, and CS Ramos. The author immensely thanks EMP Hernandez for enduring the demands of experimental work with her during the many all-nighters in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Grace C. Gregorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gregorio, C.G.C. (2023). Philippine Traditional Alcoholic Beverages: A Germinal Study. In: Mérillon, JM., Riviere, C., Lefèvre, G. (eds) Natural Products in Beverages. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-04195-2_188-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04195-2_188-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04195-2

  • Online ISBN: 978-3-031-04195-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics