Skip to main content
Log in

Undervalued Atlantic brown seaweed species (Cystoseira abies-marina and Zonaria tournefortii): influence of treatment on their nutritional and bioactive potential and bioaccessibility

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The brown seaweed species Cystoseira abies-marina and Zonaria tournefortii are abundant Atlantic resources that remain undervalued. This results from an insufficient knowledge of their nutrients’ and bioactive potential. There is also uncertainty regarding the adequate culinary treatment of these seaweeds prior to their consumption. Thus, the current study evaluated the composition, bioactivity, and bioaccessibility of target compounds and bioactivities of these two species as a function of two treatments, simple rehydration and steaming, in comparison to sun-dried seaweed. The proportion of SFA, MUFA, and PUFA differed between species. C. abies-marina was richer in PUFA (30–31% vs 20–21%) and Z. tournefortii was richer in SFA (53–57% vs 46–47%). Main contributors to ω3 PUFA content were different in each species: alpha-linolenic acid in C. abies-marina, 4.5–5.1%, and eicosapentaenoic acid in Z. tournefortii, 5.8–6.7%. The sum of Mg and Ca contents in Z. tournefortii was two-fold the same sum in the other species. Furthermore, rehydration led to an elemental concentration reduction in most instances. The As content in C. abies-marina was very high, ranging between 295 ± 5 mg/kg dw and 369 ± 2 mg/kg dw, in rehydrated and steam-cooked seaweed, respectively. While aqueous extracts of C. abies-marina had the highest phenolic contents, 620–1280 mg GAE/100 g dw, aqueous extracts of Z. tournefortii contained 170–280 mg GAE/100 g dw. Regarding bioaccessibility, Mg, K, Ca, As, and Cd showed relatively high bioaccessibility levels and it was shown that only a limited part of the original antioxidant activity in both species is bioaccessible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA Eq:

Ascorbic acid equivalent

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FAME:

Fatty acid methyl ester

FRAP:

Ferric reducing antioxidant power

GAE:

Gallic acid equivalent

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

SFA:

Saturated fatty acid

Trolox Eq:

Trolox equivalent

ω3 PUFA:

Omega-3 polyunsaturated fatty acid

ω6 PUFA:

Omega-6 polyunsaturated fatty acid

References

  1. Guiry MD (2019) AlgaeBase. Worldwide Electron Publ Natl Univ, Galway

    Google Scholar 

  2. Montero L, Herrero M, Ibáñez A, Cifuentes A (2014) Separation and characterization of phlorotannins from brown algae Cystoseira abies-marina by comprehensive two-dimensional liquid chromatography. Electrophoresis 35(11):1644–1651

    Article  CAS  PubMed  Google Scholar 

  3. Barreto C, Mendonça E, Gouveia V, Anjos C, Medeiros JS, Seca A, Neto AI (2012) Macroalgae from S. Miguel Island as a potential source of antiproliferative and antioxidante products. Arquipelago. Life Mar Sci 29:53–58

    Google Scholar 

  4. Mekinić IG, Skroza D, Šimat V, Hamed I, Čagalj M, Perković ZP (2019) Phenolic content of brown algae (Pheophyceae) species: extraction, identification, and quantification. Biomolecules 9:244

    Article  CAS  Google Scholar 

  5. Nunes N, Ferraz S, Valente S, Barreto MC, Pinheiro de Carvalho MAA (2017) Biochemical composition, nutritional value, and antioxidant properties of seven seaweed species from the Madeira Archipelago. J Appl Phycol 29(5):2427–2437

    Article  CAS  Google Scholar 

  6. Zubia M, Fabre MS, Kerjean V, Lann KL, Stiger-Pouvreau V, Fauchon M, Deslandes E (2009) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116(3):693–701

    Article  CAS  Google Scholar 

  7. Ganesan AR, Tiwari U, Rajauria G (2019) Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci Human Wellness 8:252–263

    Article  Google Scholar 

  8. Lange KW, Hauser J, Nakamura Y, Kanaya S (2015) Dietary seaweeds and obesity. Food Sci Hum Wellness 4:87–96

    Article  Google Scholar 

  9. Afonso C, Costa S, Cardoso C, Bandarra NM, Batista I, Coelho I, Castanheira I, Nunes ML (2015) Evaluation of the risk/benefit associated to the consumption of raw and cooked farmed meagre based on the bioaccessibility of selenium, eicosapentaenoic acid and docosahexaenoic acid, total mercury, and methylmercury determined by an in vitro digestion model. Food Chem 170:249–256

    Article  CAS  PubMed  Google Scholar 

  10. Afonso C, Cardoso C, Ripol A, Varela J, Quental-Ferreira H, Pousão-Ferreira P, Ventura MS, Delgado IM, Coelho I, Castanheira I, Bandarra NM (2018) Composition and bioaccessibility of elements in green seaweeds from fish pond aquaculture. Food Res Int 105:271–277

    Article  CAS  PubMed  Google Scholar 

  11. Francisco J, Cardoso C, Bandarra N, Brito P, Horta A, Pedrosa R, Gil MM, Delgado IM, Castanheira I, Afonso C (2018) Bioaccessibility of target essential elements and contaminants from Fucus spiralis. J Food Comp Anal 74:10–17

    Article  CAS  Google Scholar 

  12. Cardoso C, Afonso C, Lourenço H, Costa S, Nunes ML (2015) Bioaccessibility assessment methodologies and their consequences for the risk-benefit evaluation of food. Trends Food Sci Technol 41:5–23

    Article  CAS  Google Scholar 

  13. Gupta S, Cox S, Abu-Ghannam N (2011) Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT Food Sci Technol 44(5):1266–1272

    Article  CAS  Google Scholar 

  14. Regal AL, Alves V, Gomes R, Matos J, Bandarra NM, Afonso C, Cardoso C (2020) Drying process, storage conditions, and time alter the biochemical composition and bioactivity of the anti-greenhouse seaweed Asparagopsis taxiformis. Eur Food Res Technol 246(4):781–793

    Article  CAS  Google Scholar 

  15. AOAC (2000) Official methods of analysis of the AOAC International, 17th edn. Association of Analytical Communities, Gaithersburg

    Google Scholar 

  16. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  17. Saint-Denis T, Goupy J (2004) Optimization of a nitrogen analyser based on the Dumas method. Anal Chim Acta 515:191–198

    Article  CAS  Google Scholar 

  18. Angell AR, Mata L, de Nys R, Paul NA (2016) The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. J Appl Phycol 28:511–524

    Article  CAS  Google Scholar 

  19. Bandarra NM, Batista I, Nunes ML, Empis JMA, Christie WW (1997) Seasonal changes in lipid composition of sardine Sardina pilchardus. J Food Sci 62(1):40–43

    Article  CAS  Google Scholar 

  20. Moreira IN, Mourato MP, Reis R, Martins LL (2015) Oxidative stress induced by cadmium and copper in Brassica rapa leaves: indicators of stress, oxidative damage, and antioxidant mechanisms. Comm Soil Sci Plant Anal 46(19):2475–2489

    Article  CAS  Google Scholar 

  21. Siriwoharn T, Wrolstad RE, Finn CE, Pereira CB (2004) Influence of cultivar, maturity, and sampling on blackberry (Rubus L hybrids) anthocyanins, polyphenolics, and antioxidant properties. J Agric Food Chem 52:8021–8030

    Article  CAS  PubMed  Google Scholar 

  22. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16:144–158

    CAS  Google Scholar 

  23. Miliauskas G, Venskutonis PR, Van Beek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237

    Article  CAS  Google Scholar 

  24. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  PubMed  Google Scholar 

  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  26. Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJ, Sips AJ (2005) Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 43(1):31–40

    Article  CAS  PubMed  Google Scholar 

  27. Schiener P, Black KD, Stanley MS, Green DH (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27:363–373

    Article  CAS  Google Scholar 

  28. Lorenzo JM, Agregán R, Munekata PES, Franco D, Carballo J, Şahin S, Lacomba R, Barba FJ (2017) Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Mar Drugs 15:360

    Article  PubMed Central  CAS  Google Scholar 

  29. Manev Z, Iliev A, Vachkova V (2013) Chemical characterization of brown seaweed—Cystoseira barbata. Bulg J Agr Sci 19(Suppl 1):12–15

    Google Scholar 

  30. Airanthi MW, Sasaki N, Iwasaki S, Baba N, Abe N, Hosokawa M, Miyashita K (2011) Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver. J Agric Food Chem 59(8):4156–4163

    Article  CAS  PubMed  Google Scholar 

  31. Nunes N, Rosa GP, Ferraz S, Barreto MC, de Carvalho MAAP (2019) Fatty acid composition, TLC screening, ATR-FTIR analysis, anti-cholinesterase activity, and in vitro cytotoxicity to A549 tumor cell line of extracts of 3 macroalgae collected in Madeira. J Appl Phycol 32:759

    Article  CAS  Google Scholar 

  32. Fariman GA, Shastan SJ, Zahedi MM (2016) Seasonal variation of total lipid, fatty acids, fucoxanthin content, and antioxidant properties of two tropical brown algae (Nizamuddinia zanardinii and Cystoseira indica) from Iran. J Appl Phycol 28:1323–1331

    Article  CAS  Google Scholar 

  33. Bello AU (2017) Oxidative stability of polyunsaturated fatty acids of n-3 designer eggs under different cooking methods. J Anim Sci 20(2):75–81

    Google Scholar 

  34. Vizetto-Duarte C, Custódio L, Barreira L, da Silva MM, Rauter AP, Albericio F, Varela J (2016) Proximate biochemical composition and mineral content of edible species from the genus Cystoseira in Portugal. Bot Mar 59(4):251–257

    CAS  Google Scholar 

  35. Squadrone S, Brizio P, Battuello M, Nurra N, Sartor RM, Riva A, Staiti M, Benedetto A, Pessani D, Abete MC (2018) Trace metal occurrence in Mediterranean seaweeds. Env Sci Poll Res 25:9708–9721

    Article  CAS  Google Scholar 

  36. Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454

    Article  CAS  PubMed  Google Scholar 

  37. Ma Z, Lin L, Wu M, Yu H, Shang T, Zhang T, Zhao M (2018) Total and inorganic arsenic contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture 497:49–55

    Article  CAS  Google Scholar 

  38. Vlachos V, Critchley AT, Bannatyne TE, von Holy A (1998) Metal concentrations in seaweeds from KwaZulu-Natal, South Africa—a first report. S Afr J Bot 64(4):233–237

    Article  CAS  Google Scholar 

  39. Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79(1):23–26

    Article  Google Scholar 

  40. Liu Y, Cao Q, Luo F, Chen J (2009) Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Mater 163(2–3):931–938

    Article  CAS  PubMed  Google Scholar 

  41. Avula B, Wang YH, Khan IA (2015) Arsenic speciation and fucoxanthin analysis from seaweed dietary supplements using LC-MS. J AOAC Int 98(2):321–329

    Article  CAS  PubMed  Google Scholar 

  42. Farasat M, Khavari-Nejad RA, Nabavi SMB, Namjooyan F (2013) Antioxidant properties of two edible green seaweeds from northern coasts of the Persian Gulf, Jundishapur. J Nat Pharm Prod 8(1):47–52

    Google Scholar 

  43. Mhadhebi L, Mhadhebi A, Robert J, Bouraoui A (2014) Antioxidant, anti-inflammatory and antiproliferative effects of aqueous extracts of three Mediterranean brown seaweeds of the genus Cystoseira. Iran J Pharm Res 13(1):207–220

    PubMed  PubMed Central  Google Scholar 

  44. Airanthi MW, Hosokawa M, Miyashita K (2011) Comparative antioxidant activity of edible Japanese brown seaweeds. J Food Sci 76(1):C104–C111

    Article  PubMed  CAS  Google Scholar 

  45. Tenorio-Rodriguez PA, Murillo-Álvarez JI, Campa-Cordova AI, Angulo C (2017) Antioxidant screening and phenolic content of ethanol extracts of selected Baja California Peninsula macroalgae. J Food Sci Technol 54(2):422–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fellah F, Louaileche H, Dehbi-Zebboudj A, Touati N (2017) Seasonal variations in the phenolic compound content and antioxidant activities of three selected species of seaweeds from Tiskerth islet, Bejaia, Algeria. J Mater Environ Sci 8:4451–4456

    CAS  Google Scholar 

  47. Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder UH, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Env Sci Biotechnol 5:141

    Article  CAS  Google Scholar 

  48. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, Chan KW, Ebrahimi M (2017) Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotech 241:175–183

    Article  CAS  Google Scholar 

  49. Campos AM, Matos J, Afonso C, Gomes R, Bandarra NM, Cardoso C (2019) Azorean macroalgae (Petalonia binghamiae, Halopteris scoparia and Osmundea pinnatifida) bioprospection: a study of fatty acid profiles and bioactivity. Int J Food Sci Technol 54(3):880–890

    Article  CAS  Google Scholar 

  50. García-Sartal C, Romarís-Hortas V, Barciela-Alonso MC, Moreda-Piñeiro A, Dominguez-Gonzalez R, Bermejo-Barrera P (2011) Use of an in vitro digestion method to evaluate the bioaccessibility of arsenic in edible seaweed by inductively coupled plasma-mass spectrometry. Microchem J 98:91–96

    Article  CAS  Google Scholar 

  51. Laparra JM, Vélez D, Montoro R, Barberá R, Farré R (2003) Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. J Agric Food Chem 51:6080–6085

    Article  CAS  PubMed  Google Scholar 

  52. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982

    Article  CAS  PubMed  Google Scholar 

  53. Torres-Escribano S, Denis S, Blanquet-Diot S, Calatayud M, Barrios L, Vélez D, Montoro R (2011) Comparison of a static and a dynamic in vitro model to estimate the bioaccessibility of As, Cd, Pb and Hg from food reference materials Fucus sp (IAEA-140/TM) and lobster hepatopancreas (TORT-2). Sci Total Env 409(3):604–611

    Article  CAS  Google Scholar 

  54. Almela C, Laparra JM, Vélez D, Barberá R, Farré R, Montoro R (2005) Arsenosugars in raw and cooked edible seaweed: characterization and bioaccessibility. J Agric Food Chem 53:7344–7351

    Article  CAS  PubMed  Google Scholar 

  55. Anson NM, Van den Berg R, Havenaar R, Bast A, Haenen GRMM (2009) Bioavailability of ferulic acid is determined by its bioaccessibility. J Cereal Sci 49:296–300

    Article  CAS  Google Scholar 

  56. Schulz M, Biluca FC, Gonzaga LV, Borges GSC, Vitali L, Micke GA, de Gois JS, de Almeida TS, Borges DLG, Miller PRM, Costa ACO, Fett R (2017) Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chem 228:447–454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the following Post Doctoral Grants: Ref.: SFRH/BPD/102689/2014 (“Fundação para a Ciência e a Tecnologia”, FCT) for the author Carlos Cardoso and DIVERSIAQUA (MAR2020, Ref.: 16-02-01-FEAM-66) for the author Cláudia Afonso. A doctoral grant awarded by FCT supported the work done by Joana Matos (SFRH/BD/129795/2017). The experimental work was funded by the projects I9+ PROALGA (Ref.: 16-01-03-FMP-0011) and AQUAMAX (Ref.: 16-02-01-FMP-0047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Cardoso or C. Afonso.

Ethics declarations

Conflict of interest

There is no conflict of interest involving any of the authors.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, I., Guarda, I., Mourato, M. et al. Undervalued Atlantic brown seaweed species (Cystoseira abies-marina and Zonaria tournefortii): influence of treatment on their nutritional and bioactive potential and bioaccessibility. Eur Food Res Technol 247, 221–232 (2021). https://doi.org/10.1007/s00217-020-03620-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03620-x

Keywords

Navigation